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Abstract

Stem cell-based regenerative therapies have gained attention from equine veterinarians in the past two decades responding to 
the pressing need posed by the high prevalence of musculoskeletal disorders among horses and the limited success of conventional 
treatment options. Given their remarkable regenerative potential and versatility, mesenchymal stem cells (MSCs) have merged as a 
focal point of interest within this field. As a prevalent and debilitating musculoskeletal disorder, osteoarthritis (OA) poses significant 
challenges for equine veterinarians and owners alike, affecting the well-being and performance of affected animals. This review 
aims to provide valuable insights into evidence-based treatments using MSCs in equine veterinary medicine, ultimately improving 
outcomes for horses affected by OA and contributing to ongoing efforts to advance equine musculoskeletal health.
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Introduction
Animals, like human beings, undergo aging, an inevitable nat-

ural process that affects all living beings. With aging, animals fre-
quently experience the development of articular cartilage lesions, 
a condition known as osteoarthritis (OA). Sporting and working 
animals are more likely to develop OA due to the chronic strain 
they endure, which can lead to damage and deterioration of bone 
and muscle tissue, resulting in clinical signs [1-3] characterized  

 
by chronic pain and increasing disability as a result of progressive 
joint degeneration [1].

In OA, chondrocytes transition from a quiescent state to an “ac-
tivated” state, marked by cell proliferation, matrix degradation and 
remodeling, and inappropriate hypertrophy-like maturation, lead-
ing to degradation of the articular cartilage, thickening of the sub-
chondral bone, osteophyte formation, and synovial inflammation. 
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The primary characteristic of OA is the progressive degeneration of 
articular cartilage and surrounding periarticular tissues. 

Unfortunately, due to relative avascularity and therefore the 
lack of systemic regulation, cartilage has limited intrinsic repair 
capacity, making regeneration challenging [4]. Therefore, OA is a 
progressive condition that cannot currently be cured [3]. The ab-
sence of a cure for OA requires management strategies to alleviate 
pain and inflammation, restore normal cartilage and joint function, 
and prevent further damage [5]. The primary characteristic of OA is 
the progressive degeneration of articular cartilage and surround-
ing periarticular tissues. These conditions are primarily associated 
to either injury, aging or over exertion. After an injury, the affected 
area of cartilage forms fibrous tissue and loses its structural prop-
erties of hyaline tissue. In some cases, the cartilage defect may even 
penetrate through the entire cartilage to the subchondral bone, re-
sulting in pain, deformity, loss of function of the entire joint, and 
even disability [6,7]. Similar to humans, horses also experience OA 
as a result of aging and extended periods of exercise.

As such, animal health is a major concern for the industry, es-
pecially in equine, given that the cost of injuries and illnesses in 
sports animals worldwide amounts to billions of dollars each year. 
The types and anatomical location of injuries vary among sporting 
disciplines, levels of competition, and age, but in all cases, articu-
lar and musculoskeletal injuries are the most clinically relevant in 
most sports disciplines, mainly because of their poor healing ca-
pacity and the consequent tendency to develop chronic or degen-
erative disorders [8].

This implies, in a large number of cases, animals are unable to 
return to training or competition and often must wait for long peri-
ods of time to do so. Even in the most severe cases, euthanasia may 
be necessary [9]. Numerous investigations have shown that ortho-
pedic problems are the main reason for loss of training ability and 
death in athletic horses [10-13] accounting for more than 70% of 
lost training days in both jumping and racing horses [14].

Current methods for OA treatment in animals include system-
ic or intra-articular application of non-steroidal anti-inflammatory 
drugs (NSAIDs), hyaluronic acid, and other substances [15,16], or 
even surgical treatment [17]. However, these therapeutic options 
do not halt the progression of the disease, and always associated 
with some side effects [18] and at best provide short-term solu-
tions, where the repaired tissue does not have the same charac-
teristics of elasticity and strength as the original tissue, and thus 
result in a high rate of injury recurrence. In fact, partial healing of 
the lesion usually ends in fibrosis that is difficult to treat, due to an 
over-accumulation of extracellular matrix components [19]. This 
is why veterinary medicine is an active search for therapeutic al-
ternatives that allow the animal to regenerate the damaged tissue, 
reduce recovery time and improve its overall quality of life.

Stem cells are generally characterized by their capacity for 
self-renewal and differentiation into different cell types both in vi-
tro and in vivo [20,21]. These cells are responsible for the develop-
ment and regeneration of an individual’s organs and tissues. There 
are multiple types of stem cells according to their potency levels 

and the source from which they are obtained. The best known are 
embryonic stem cells (ESCs), induced pluripotent stem cells (iP-
SCs), and mesenchymal stem cells (MSCs). Due to their characteris-
tics, they have become a fundamental tool in regenerative medicine. 
In recent years, their study and application has grown enormously 
due to their proven therapeutic action in different pathologies, from 
tissue damage to degenerative diseases or immune disorders [22].

Unlike ESCs and iPSCs, MSCs are classified as adult stem cells, 
derived from various tissues of an adult organism, such as skin, 
adipose tissue, bone marrow, brain, heart, and reproductive or-
gans [23]. The physiological function of these cells in the body is to 
maintain tissue homeostasis and promote tissue recovery in case of 
damage, among others [14]. MSCs have a more restricted differenti-
ation potential than pluripotent stem cells, being able to differenti-
ate only to mesoderm-derived cell types [24].

They were first discovered in 1963 and have since been ex-
tensively studied [25]. Stem cells have been widely used in clinics 
and have demonstrated considerable therapeutic value in treating 
various conditions, including diabetes mellitus [26], OA [27], and 
macular degeneration [28]. Additionally, stem cell therapy has been 
utilized in treating animal diseases for many years [29]. In 2003, 
Smith, et al. applied mesenchymal stem cells (MSCs) to treat super-
ficial flexor tendon injuries in racehorses [30]. This paved the way 
for the use of stem cells in equine disease treatment, with a focus 
on osteoarthritic diseases, which is the subject of this review. The 
aim of the current review article is to provide a clear overview of 
currently reported equine OA research on MSC application, with a 
main focus on different sources of MSC. Special attention is given to 
the distinctive features, differentiation potential for tissues of in-
terest and regeneration outcomes. We aspire to provide valuable 
insights that can benefit animal health. 

MSCs therapy for OA
Given the limitations of current osteoarthritis (OA) manage-

ment, researchers are exploring new and promising options. Bi-
ological therapies utilizing mesenchymal stem cells (MSCs) have 
emerged as a significant focus in both human and veterinary OA 
research. Because of their multipotentiality, these adult stem cells 
have the potential to repopulate cartilage defects. Moreover, MSCs 
possess immunomodulatory properties that can reduce local and 
systemic inflammation. Additionally, they release signaling mole-
cules that stimulate local repair cells, potentially aiding in cartilage 
healing. MSCs also exhibit homing capabilities, enabling them to be 
recruited to sites of tissue injury, both locally and systemically.

MSCs were first described in 1970 as a population morpholog-
ically similar to fibroblasts and with the ability to adhere to plastic. 
The researchers isolated these cells from bone marrow (naming 
BM-MSCs) and found that they could later differentiate into os-
teocytes. Later, it was discovered that MSCs could be isolated from 
other adult tissues, such as the umbilical cord and placenta. It was 
then shown that with proper stimulation, these cells could differ-
entiate into various cell types in addition to osteocytes, such as ad-
ipocytes and chondrocytes [31]. MSCs are present in various adult 
tissues, such as bone marrow and adipose tissue, so they can be 
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isolated and cultured in vitro with relative ease [32-34]. However, 
in most cases, surgical intervention is required to obtain the tissue 
of which cell will be derived [35]. In addition, MSCs isolated from 
different tissues show certain differences in their in vitro amplifi-
cation capacity or differentiation potential, which influences their 
subsequent applicability [36,37]. Also, besides of the origin from 
which they are sourced, tissue donor age greatly influences the cell 
yield obtained from a certain amount of tissue as well as cell pro-
liferation rate. Therefore, the selection of a suitable cell source for 
clinical use must consider logistical, practical, and functional issues 
[38]. Currently, MSCs derived from bone marrow and adipose tissue 
are the most commonly used. Because MSC are nonimmunogenic 
this makes them a great candidate to be used in both autologous 
and allogeneic approaches [39-41].

Initially, MSC differentiation and direct incorporation into re-
generating tissues were speculated to be a primary mechanism of 
MSC action; however, the contribution of trans-differentiation and 
direct incorporation are somewhat controversial [42]. Rather, MSCs 
were shown to secrete various growth factors and cytokines includ-
ing interleukin 6 (IL-6), interleukin 1 beta (IL1 β), Tumor necrosis 
factor alpha (TNF- α), Interleukin 8 (IL-8), Interleukin 10 (IL-10), 
monocyte chemoattractant protein -1 (MPC-1), vascular cell adhe-
sion molecule (VCAM), Vascular endothelial growth factor (VEGF) 
and Transforming growth factor β (TGF- β) among others.

Bone Marrow-Derived Mesenchymal Stem Cel-
ls (BMSCs)

BMSCs are widely used in veterinary medicine. However, in 
equines, marrow procurement is usually performed from a sternal 
puncture [43], a practice that is very risky due to its proximity to 
the pericardial cavity, and associated risks of serious infection and 
bleeding [44].

BMSCs are commonly used in equine OA due to their superi-
or chondrogenic differentiation potential compared to adipose 
tissue-derived MSCs and peripheral blood-derived MSCs [45,46]. 
Intra-articular injection of BMSCs has been shown to improve 
cartilage repair quality by increasing aggreging content and tis-
sue strength, as well as facilitating cartilage fracture healing [47].  
David, et al. found that intra-articular injection of BMSCs resulted 
in significantly lower levels of prostaglandin E2 in the synovial flu-
id compared to the group that received adipose-derived stromal 
vascular fraction injection in an equine OA model [48]. Addition-
ally, BMSCs are believed to have superior therapeutic effects for OA 
compared to cord blood MSCs (CB-MSCs) [49,50]. 

Furthermore, it has been demonstrated that exosomes de-
rived from BMSCs possess therapeutic effects for OA: Hotham and 
Manon, et al. have reported that vesicles derived from BMSCs can be 
taken up by autologous chondrocytes and may have anti-inflamma-
tory properties [51]. Numerous preclinical studies in humans have 
demonstrated that exosomes play a significant role in facilitating in-
formation exchange among chondrocytes and modulating the phys-
iological functions of these cells. Due to their complex composition, 
current research still has a considerable gap in fully understanding 
the diverse landscape of exosomes derived from various types of 

mesenchymal stem cells (MSCs) for osteoarthritis (OA) treatment. 
Among the various contents of exosomes, microRNA (miRNA) has 
emerged as a primary focus of research and is found in the major-
ity of MSCs. It is worth noting that exosomes derived from certain 
sources have the ability to sustain cell homeostasis and inhibit cel-
lular apoptosis progression [52-54].

Adipose-Derived Mesenchymal Stem Cells (AD-
MSCs)

AD-MSCs, derived from equine adipose tissue, offers a safer and 
more economical alternative to BMSCs, while retaining the same 
potential for multidirectional differentiation [55]. Due to its ease of 
collection and abundance of cells present in adipose tissue [56] it 
has become a preferred choice [57]. AD-MSCs are morphologically 
and immunophenotypically identical to BMSCs, yet exhibit signifi-
cantly greater proliferative potential than BMSCs [58,59]. Ad-MSCs 
have also been shown to be more active in the autocrine production 
of some growth factors and immunomodulators at equal cell num-
ber than BM-MSCs [60,61].

AD-MSCs have been shown to have a therapeutic role in OA. 
Luis, et al. demonstrated that one or two intra-articular injections 
of AD-MSCs could reduce lameness in horses with OA and decrease 
the need for anti-inflammatory medication [62]. The study by  
Delco, et al. revealed that AD-MSCs with high expression of integrin 
α10 significantly improved joint damage in horses and activated in-
tra-articular immunomodulation [63]. AD-MSCs can enhance their 
osteogenic differentiation by binding to macromolecular biomate-
rials and experiencing fluid shear stress [64].

Embryonic Tissue Mesenchymal Stem Cells
Embryonic tissues, such as umbilical cord blood, placenta, and 

amniotic membrane [55], are also a rich source of stem cells. These 
tissues are convenient since normally are discarded after the foal 
is born. Moreover, they possess a longer survival time attributed to 
their extended telomerase activity [65, 66]. Stem cells derived from 
embryonic tissues express markers associated with the embryonic 
phenotype, thus affording them a broader differentiation capacity 
[67,68].

Cord blood MSC (CB-MSCs) possess similar potential for treat-
ing OA. While BMSCs are frequently used in equine musculoskele-
tal disorders, it has been suggested that CB-MSCs may have a more 
robust chondrogenic phenotype. White, et al. demonstrated that 
CB-MSCs proved to be superior overall in chondrogenic differentia-
tion than BMSCs, with a functionality index >50% of native equine 
patellar cartilage, as well as collagen production and alkaline phos-
phatase activity comparable to those of native equine articular car-
tilage [69]. Additionally, cartilage formed by CB-MSCs has signifi-
cantly higher chondrogenic differentiation indices than that of the 
BMSCs source [70].

Mesenchymal Stem Cells from other Tissues
Other tissues, such as peripheral blood and tendon tissue, 

have been explored for their potential application in equine dis-
eases. Studies have indicated that tendon tissue-derived stem cells 
demonstrate the ability to differentiate towards osteogenesis and 
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lipogenesis, rendering them promising candidates for osteoarthri-
tis studies [71-73], even better than BMSCs [74]. Due to its ease of 
procurement, peripheral blood MSCs were considered a good can-
didate, however their low recovery rated and diminished differen-
tiation potential they are not widely used [46,75]. Furthermore, it 
has been described that stem cells derived from peripheral blood 
may not possess the capability to differentiate into chondrocytes 
[46], thus limiting their potential for treating OA.

Prospective
OA is a prevalent joint disease, particularly among middle-aged 

and elderly individuals. Equine OA treatment is of particular im-
portance as horses are considered a relevant model for human OA 
[49] hence all equine research holds great translational promise. 
MSCs have a promising future in regenerative medicine due to their 
cellular plasticity. In equine OA, MSC-derived chondrocytes can re-
place diseased tissue and provide a complete cure, which cannot be 
achieved through current conventional means such as drug therapy 
and surgery.

Although both BMSCs and CB-MSCs have shown favorable 
chondrogenic effects, the advantages and disadvantages of each 
need to be further explored. 

One factor to consider is the availability and accessibility of 
MSC sources. BMSCs requires invasive procedures such as bone 
marrow aspiration while CB-MSCs, on the other hand, can be de-
rived from umbilical cord blood, which is a non-invasive and readily 
available source. 

Another consideration is the differentiation potential of MSCs. 
BMSCs were historically regarded as the preferred treatment for OA 
due to their robust chondrogenic differentiation capacity. However, 
in recent years, CB-MSCs have also demonstrated excellent chon-
drogenic potential, challenging the long-standing dominance of 
BMSCs in this field. 

In addition, the immunomodulatory properties of MSCs should 
be considered. Originally, their use in cell replacement therapies 
was considered, i.e., it was thought that by injecting stem cells into 
a damaged tissue, due to their differentiation potential, cells would 
differentiate into the specific cell type, thus replacing the dam-
aged tissue [76]. However, it was later shown that the exposure of 
these cells to a pathological environment did not necessarily allow 
cells to receive the appropriate signals to carry out a differentia-
tion process to the cell type of interest. MSCs, in particular, were 
shown to have a beneficial, regenerative effect at the sites of treated 
[77] and, therefore, other hypotheses about their therapeutic ben-
efits arose. It began to be considered that these cells could play an 
immunomodulatory role in the inflammatory environment of the 
wound, or that they could influence the migration and activation 
of the individual’s own cells [78]. Both BMSCs and CB-MSCs have 
demonstrated immunomodulatory capacity [79,80], which can aid 
in reducing inflammation and promoting OA tissue repair. However, 
the specific mechanisms and effects of immunomodulation by these 
two types of MSCs may differ. Further research and clinical trials 
are necessary to provide more conclusive evidence and guidance 
on the selection of MSCs. 

Despite the promising therapeutic effects of MSCs and their ex-
tracellular vesicles in OA, it is important to be aware of potential 
complications. Complications following stem cell therapy were 
observed in horse studies, including swelling, redness, and joint 
effusion at the injection site, and exacerbations [81,82]. Berglund, 
et al. demonstrated that recipient horses produced a cytotoxic an-
tibody response after injection of MHC-mismatched MSCs, capable 
of killing donor MSCs in vitro [83]. Moreover, although not report-
ed in horses, graft-versus-host disease (GVHD) after hematopoietic 
stem-cell transplantation is possible in dogs [17]. 

Future research studies employing state-of-the-art technology 
can be key to validate the effectiveness and safety of MSC thera-
pies and their derivatives allowing these cells to become a leading 
candidate for the treatment of various diseases, including arthritic 
diseases.
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