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Plant Defense Mechanism
As sessile organism plants are exposed to multiple 

environmental threats. Unlike animals, they lack mobile immune 
cells. Hence, to safeguard themselves from a range of pathogens, 
plants come by a multi-tiered innate immune system [1,2]. The 
first line of defense mechanism is the recognition of the pathogen 
by detecting pathogen-associated molecular patterns (PAMPs) or 
microbial-associated molecular patterns (MAMPs) which are either 
extracellularly exposed or secreted extremely conserved pathogen-
derived molecules [1,3]. This recognition is achieved by a cognate 
plant cell-surface pattern-recognition receptor (PRR). Once the 
invading pathogen’s microbial signature ‘PAMP’ is recognized by 
the PRR, the plant cell initiates signaling cascades via the mitogen-
activated protein kinase (MAPK). This first line of the plant defense 
mechanism is referred to as pattern-triggered immunity (PTI) [4-
8].

Pattern Recognition Receptors (PRRs)

PRRs are grouped into receptor-like kinase (RLK) and 
receptor-like protein (RLP). RLKs contain an extracellular domain, 
transmembrane domain, and intracellular kinase domain while 
RLPs lack kinase domain [6,7,9-11]. The number of RLKs and RLPs 
are much higher in plants compared to animals [12]. In Arabidopsis 
plant, around 410 RLKs and 170 RLPs have found so far, which 
is around 640 and 90 for rice consecutively [12-14]. Again, the 
number of RLKs is much higher than the number of RLPs. In the 
success of terrestrial plants, these high number of presence of RLKs 
and RLPs might have played a crucial role [15].

Based on the extracellular domain (ECD), RLKs and RLPs are 
again categorized into several subfamilies which include epidermal 
growth factor-like (EGF) domains, lysine motif (LysM) and leucine-
rich repeat (LRR) [16]. Among these subfamilies, leucine-rich  

 
repeat like kinase (LRR-RLKs) is the largest family in plant [15]. 
With over 200 members of LRR-RLKs in Arabidopsis, they play a 
great role in plant development and defense processes which 
includes symbiosis, wounding response, hormone perception, stem 
cell maintenance and cell proliferation [17].

Structure of Leucine-Rich Repeat Receptor-Like Kinase 
(LRR-RLK)

Plant LRR-RLKs are composed of a very specific consensus 
sequence LxxLxxLxLxxNxLSGxIPxxLGx, while x symbolizes non-
conserved residues. This unique 24 amino acid sequence forms the 
beta sheet or beta turn which acts as protein-protein interaction 
surface. This unique motif forms a helical horse-shoe like structure 
in plant [18-21]. According to the recent studies, not all LRR-RLK 
domains composed of tandem arrays of multiple LRRs form horse-
shoe like structure. Instead, some of them like plant brassinosteroid 
(BR) LRR form a right-handed superhelical structure which is 
different from solenoid conformation [19,22,23]. This unique GxIP 
sequence which form the helical structure is common in case if 
receptor-like protein kinase 2 (RPK2) [24], flagellin-insensitive 2 
(FLS2) [25], BRI1-like receptor kinase 1 (BRL1) [26]. There is a 
notable difference in the size of LRR-RLK. Recent crystallographic 
structures reveal that this size varies from 21-19 LRRs. Recent 
studies showed that around 20-25 LRRs form this superhelical 
structure where inner surface and lateral side of the structure 
actively involves in binding with other proteins [25,27]. PGIP has 
10 LRRs, SERK1 has 5 LRRs, HAESA has 21 LRRs, TDR/PXY has 
22 LRRs, FLS2 has 29 LRRs, BRI1 has 25 LRRs, PSKR has 21 LRRs, 
RPK2 has 22 LRRs and TMK1 has 13 LRRs [28]. Small sized LRR-
RLK is observed in AtBAK1 and OsSerk2 (Figure 1) which acts as a 
co-receptor for activation of PTI by PRR FLS2 and Xa21 respectively 
[25,29].
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Figure 1:  Cartoon structure of different LRR-RK. C and N stands for C terminal and N terminal respectively.

Island domain in LRR-RLK
In LRRs, LRR-RLK stands between 1st to 322nd LRRs where there 

can be a spacer region at 4th to 5th LRR from the C terminal end of 
30 to 70 amino acids known as island domain (ID) [9]. The ID is 
not likely for all the LRR-RLK and its sequence is not conserved 

between species. These ID can interact with the PAMPs like BL with 
BRI1 [30] and PSK with PSKR [31,32] (Figure 2). Also, 2 ID were 
observed in the crystal structure of RPK2 which creates scaffold 
where the ligand binds [24]. This suggests the function of island 
domain as binding of LRR ectodomain with small ligands [28].

Figure 2:  Island domain in BRI1 (left) and PSKR (right) [28].

Cys-pairs in LRR-RLK
Again, Cys-pairs which are placed between last LRR and 

transmembrane domain or near the start codon before LRR is 
another interesting extracellular domain in LRR-RLK [33]. Although 

the function of the Cys-pair is not clear, the mutation of it showed 
a significant decrease in FLS2 activity while BRI1 and CLAVATA2 
showed no effect [34]. Although Cys-Pairs in LRR-RLK is assumed 
to contribute towards trafficking, folding and binding, no strict 
decision can be drawn regarding the importance of it.
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Conclusion
The above discussion shows, in spite of the fact that most of 

the LRR-RLKs share a common shape, a significant difference 
is observed in the case of other factors such as diameter, LRR 
numbers, the presence of the island domain and cys-pairs. All this 
play a pivotal role in different binding mechanism in PTI complex at 
the early stage of the plant defense mechanism. It is needless to say, 
to obtain a precise idea about the detail function and interaction of 
different domains, further investigation needs to be done on LRR-
RLK conserved protein structures, motif compositions, and gene 
structures.
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