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Introduction
Worldwide approximately 15 million babies are born 

prematurely before 37 weeks gestational age, of which an estimated 
1 million of these babies die due to complications directly associated 
with preterm delivery [1]. Premature babies are highly susceptible 
to several neonatal related-morbidities, namely respiratory, 
neurological, and gastrointestinal [2]. Several of these illnesses 
can persist past infancy and childhood and ultimately become 
a considerable financial burden to both families and healthcare 
systems [3]. A type of chronic lung disease, bronchopulmonary 
dysplasia (BPD), particularly prevalent in preterm babies 
that had received supplemental oxygen and supported by 
mechanical ventilation for alleviating respiratory failure was first 
communicated in 1967 [4]. At that time, BPD manifested itself as 
lung injury with marked inflammation and fibrosis [4]. Since then, 
significant progress in perinatal and neonatal medicine, together 
with innovative practices, and procedures have greatly improved 
survival of extremely premature babies born as early as 22-24 
weeks gestational age [5]. At the same time, the incidence of BPD 
has increased; 45% of preterm babies that are delivered between  

 
22-27 weeks gestational age will go on to develop BPD; in the 
United States there are up to 10,000 reported incidents of preterm 
babies with BPD each year [5].

Concurrent with these changes, the pathophysiology of BPD 
has altered and is now characterized by reduced alveolarization, 
impaired development of blood vessels and the microvasculature, 
enlarged airspaces, and poor lung function [6]. The etiology of BPD 
in the preterm baby is multifactorial; the extent of prematurity, 
several antenatal insults, and anomalies followed by postnatal 
influences and other co-morbidities which occur as a consequence 
of preterm birth all contribute to the onset and progression of 
BPD, summarized in Figure 1 [6-8]. Anomalies in lung function 
that began at birth owing to prematurity, subsequent extrauterine 
adaptations, and the manifestation of BPD persist throughout life [9, 
10]. Studies have reported that children formerly born premature 
with BPD were more likely to exhibit poor lung function by the time 
they reached school-age [10]. Long-term follow-up studies have 
also reported sub-optimal lung function and increased incidence of 
emphysema in young adults who were former BPD patients [11,12].
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Figure 1: Left, The multifactorial risk factors of bronchopulmonary dysplasia. Right, Present therapeutic options and clinical strategies with the aim 
to reduce the severity of bronchopulmonary dysplasia.

Existing Therapeutic Options for BPD
Despite considerable advances in neonatal clinical management 

BPD persistently presents itself as a significant illness for 
premature babies. As the etiology of BPD is multifactorial this 
presents a confounding therapeutic conundrum. In the ideal setting 
prevention of premature birth is the sole solution to avoiding the 
onset of BPD; a feat that has yet to be achieved. Current therapies 
are mainly supportive and directed towards minimizing lung injury 
(summarized in figure 1), but neither significantly diminish the 
incidence of BPD nor do they alter the pathophysiological course of 
the disease process [13-18]. In follow-up studies, certain treatment 
regimens such as postnatal dexamethasone has been associated 
with adverse neurological outcomes [19]. Clearly, there is a 
pressing requirement to identify alternative therapies that are both 
effective and safe for alleviation of this debilitating, multifactorial 
lung disease.

An Untapped Therapeutic Option: Mesenchymal 
Stromal/Stem Cells

Bone marrow-derived mesenchymal stromal/stem cells 
(MSCs) were first described by Friedenstein and colleagues and 
their intrinsically diverse properties, attributes (e.g. self-renewal, 
differentiation, pro- angiogenic, anti-inflammatory, anti-fibrotic, 
and antioxidant), and classifications have been previously reviewed 
[20-22]. MSCs have been identified in almost all fetal and adult 
tissues and play crucial roles in promoting tissue development and 
the reparative responses to the injured host tissues/cells [21,23,24]. 
In the fetal lung resident or endogenous MSCs coordinate and 
foster alveolar development, tissue reparative processes, and 
growth of the pulmonary vasculature [23,25]. Recently Collins 
and colleagues reported that the repair potential of resident fetal 
lung MSCs isolated from an oxygen-induced rat BPD model was 

altered [26]. In addition, studies by Popova and colleagues showed 
that cultured MSCs isolated from tracheal aspirates of preterm 
babies that subsequently developed BPD exhibited a myofibroblast 
phenotype suggesting these cells exhibit a dual mode of action that 
is dependent upon their environment; Specifically, under normal 
circumstances resident lung MSCs promote lung growth, repair and 
development, whereas under constant injury these cells very likely 
switch to a pathogenic pathway [27].

Owing to the diverse properties and attributes of MSCs coupled 
with experimental evidence describing their dysfunction in BPD, 
sound judgement prevails that exogenous MSCs will be a suitable 
alternative treatment option for BPD. To further support the utility 
of MSCs as a therapeutic contender for BPD, several logistical 
aspects have to be considered: 

a) MSCs can be easily isolated from adipose and bone marrow 
tissue in sufficient amounts [28]. MSCs can also be isolated devoid 
of ethical constraints from placental and umbilical cord tissue 
(Wharton’s jelly) and blood, and amniotic fluid which provides an 
autologous source of cells [29,30]. Regardless of the source, MSCs 
can be easily cultured and rapidly expand in carefully controlled 
environments, essentially following good manufacturing practices;

b) MSCs do not express human leukocyte antigen class II 
which affords allogenic treatment [31]; and 

c) MSCs can move towards injured tissues and selectively 
adapt their reparative actions [32].

At first, it was postulated that MSCs exerted their beneficial 
effects by migrating to the site of injury, followed by engraftment, 
and then differentiating in to the compromised/damaged cells [34]. 
Subsequent studies in rodent models of BPD reported poor rates 
of engraftment of exogenous MSCs coupled with the finding that 
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MSCs only lasted for a few days in the lung [34-36]. The accepted 
means by which MSCs exert their beneficial effects is via paracrine 
mechanisms. This includes secretion of bioactive substances with 
anti- apoptotic, anti-inflammatory, and pro-angiogenic properties 
(collectively referred to as the secretome or conditioned media) 
within the microenvironment and exosomes, containing proteins, 
microRNAs, and mRNA fragments [37,38]. Exosomes are then 
taken up by the damaged cells by means of vesicle fusion [40]. Also, 
MSCs can transfer mitochondria to target cells through nanotubes 
or microvesicles [37]. This is particularly beneficial to minimize 
apoptosis in target cells [37].

Therapeutic Effects of MSCs: Proving a Concept
The conviction that exogenous MSCs and or the secretome will 

be beneficial in ameliorating BPD-like lung damage in experimental 
animal models was validated by Augustine and colleagues, who 
completed a systematic review and meta-analysis study [41]. In 
this study the authors categorized 25 independent research reports 
which utilized newborn rodents (mice and rats) who were exposed 
to hyperoxia and displayed BPD-like lung injury. Animals received 
either human umbilical cord or cord blood or rat bone marrow 
derived MSCs which were administered either via intraperitoneal, 

intravenous, or intratracheal routes [41]. Variables in these 
studies included source and route of administration of MSCs, the 
number of administered cells, and long-term outcomes. In the 
MSCs-treated rodents, significant improvements in lung function 
and alveolarization, and vascular growth coupled with decreased 
inflammation and oxidative stress was observed [7,41-43].

Clinical Trials: Taking the Concept to the Bedside
The outcomes of the initial, groundbreaking phase I clinical 

trial was recently reported [44]. In this study, nine preterm babies 
(23-29 weeks gestational age) requiring mechanical ventilation 
between 5-14 days following birth were treated once with either 
107 or 2X107 umbilical cord blood derived MSCs (intratracheal 
delivery). It is extremely important to note that these babies did not 
exhibit any undesirable consequences thus strongly supporting the 
safety and practicality of this novel therapeutic modality [44]. The 
same investigators went on to report that there were no indications 
of neurological, respiratory, or growth deficits in these babies after 
2 years [45]. These pioneering studies have set the precedence for 
several other independent investigators to initiate their own phase 
I-II trials, summarized in Table 1.

Table 1: Clinical Trials of Mesenchymal Stromal Cells Therapy for Bronchopulmonary Dysplasia.

NCT ID number Phase Cell Source Administration Number of Enrollees Age of Enrollees 
(Upper Limit)

NCT01207869 I UC-MSC Intra-tracheal 10 6 mos

NCT01297205 I Allogenic UCB-MSC Intra-tracheal 9 14 days

NCT01632475 I Allogenic UCB-MSC Intra-tracheal 9 48 mos

NCT02023788 I Allogenic UCB-MSC Intra-tracheal 8 63 mos

NCT02443961 I MCS Not defined 10 28 wks

NCT03378063 I Allogenic UCB-MSC Not defined 100 3 mos

NCT03631420 I UC-MSC Not defined 9 38 wks

NCT03683953 I MSC Intra-tracheal 200 37 wks

NCT03857841 I BM-MSC EV Intravenous 18 14 days

NCT03873506 I UC-MSC Intravenous 30 5 yrs

NCT02381366 I-II Allogenic UCB-MSC Not defined 12 14 days

NCT03558334 I-II UCB-MSC Intravenous 30 Not defined

NCT03645525 I-II UC-MSC Intra-tracheal 180 3 wks

NCT03774537 I-II UC-MSC Intravenous 20 14 days

NCT01828957 II Allogenic UCB-MSC Intra-tracheal 70 14 days

NCT01897987 II Allogenic UCB-MSC Intra-tracheal 70 7 mos

NCT03392467 II Allogenic UCB-MSC Not defined 60 13 days

NCT03601416 II UC-MSC Intravenous 57 12 mos

Conclusion
Identifying the most effective treatment for BPD has indeed 

proven an onerous task. However, owing to advancements in MSC-
biology has now afforded us with a potentially very promising 
therapeutic option. Preclinical studies using MSCs for the treatment 
of BPD have essentially paved the way for the initiation of several 

clinical trials. Of note, given the multifactorial nature of BPD, one 
has to consider that MSCs combined with other drugs may yet prove 
to be an additional useful therapeutic option. Concurrent with the 
clinical trials, we must still continue to investigate the long-term 
efficacy and safety of this particular therapy. Also, of importance is 
to 1) further understand the mechanistic pathways of MSCs mode 
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of action using both in vivo and in vitro models; and 2) investigate 
the effects of the microenvironment on the biological properties of 
lung tissue resident/endogenous MSCs. It is unknown as to whether 
endogenous fetal lung-MSCs recover and regain their biological 
properties after cessation or lessening of BPD or how for long they 
remain in a quiescent/altered state. In a similar context, although 
recent studies have clearly demonstrated the therapeutic efficacy 
of exogenously applied MSC or their secretome via a paracrine-
mediated effect in animal models of neonatal lung disease, the 
interaction between exogenous MSCs and compromised resident 
fetal lung-MSCs is unclear.
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