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Tumor Angiogenesis and Cancer Stem Cells (CSCs)
Tumor angiogenesis develops due to injury in the basement 

membrane in tissue and creation of hypoxia thus releasing 
angiogenic factors that activate endothelial cells to migrate, 
proliferate and stabilize [1]. The activation of the angiogenic factors 
such as Vascular Endothelial Growth Factor (VEGF), Basic Fibroblast 
Growth Factor (bFGF) and angiogenin and the down- regulation of 
the angiogenic inhibitors such as angiostatin, interferon, platelet 
factor 4 and endostatin together regulate tumor angiogenesis [2]. 
Tumor neovascularization is often linked to stemness through 
the differentiation of CSCs to endothelial cells. CSCs in melanoma 
differentiate into endothelial–like cells when cultured in specific 
endothelial cell growth medium [3,4]. Studies explained the 
implication of CSCs in angiogenesis [3-5]. 

The human melanoma cell line, WM115, expresses angiogenic 
factors including VEGF, VEGFR-2, Ang1/2 and Tie2 along with 
melanoma specific CSCs signaling proteins such as Notch [4,5]. 
Moreover, it was found that CSCs promote EGFR-Akt-Smad signalling 
resulting in ID3 regulated cytokine induction which drives tumor 
angiogenesis [3]. As in other tumors, the CSC marker, CD133, is 
also important for angiogenesis in melanoma. CD133+ melanoma 
specific CSCs play an important role in the formation of functional 
tubules and in the maintenance of endothelial cell alignment [4]. 

Rapid uncontrolled tumor growth leads to increased oxygen 
demand due to a surge in cellular metabolism, resulting in the  

 
eventual formation of hypoxic microenvironment [6]. Hypoxia is 
considered a key driving force of tumor progression, significantly 
impacting tumor cell differentiation [7]. In addition, hypoxia 
stimulates the activation of transcription factors and signaling 
pathways involved in angiogenesis and cell survival, which further 
promote tumor growth and metastasis [8,9].

Vasculogenic Mimicry is Triggered by Hypoxia
Anti-angiogenic cancer drugs that target tumor vasculature 

result in hypoxic stress within the tumor microenvironment [10]. 
Hypoxic conditions can trigger the formation of independent 
non-angiogenic vascular-like structure in a few solid tumors, a 
phenomenon is known as Vasculogenic Mimicry (VM) [11]. VM was 
first described in 1999 using an aggressive melanoma cell model 
that acquired endothelial-like properties by de-differentiating into 
multiple cellular phenotypes. The endothelial-like characteristics 
acquired by these cells resulted in the development of vascular-
like structures described as vasculogenic-like matrix-embedded 
networks [12]. These vasculogenic-like networks contained plasma 
and red blood cells suggesting that this matrix could contribute to 
tumor blood circulation [12,13]. VM networks were found to be 
enriched in laminin and lined by tumor cells [12-14]. Importantly, 
there was no evidence for the presence of endothelial cells within 
these matrix-rich channels, identifying VM as a fully independent 
process from angiogenesis [12]. 
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In aggressive tumors, an increased risk of metastasis is 
associated with an abundance of VM-associated matrix-rich 
networks in tumor tissue, consequently correlating with poor 
clinical outcomes in patients [12,15,16]. In hepatocellular 
carcinoma, hypoxia promoted VM through transcriptional co-
activation of Bcl-2 and Twist1 where their nuclear co-expression 
is correlated to VE expression [17]. Also, the expression of hypoxia-
inducible factor HIF-2α up-regulates VE-cadherin [18]. VE-cadherin 
expression triggers signaling pathways which in turn activates 
VM in melanoma [14]. Knockdown of VE-cadherin results in the 
inhibition of VM in aggressive melanomas [19]. 

The Role of Cscs in Vasculogenic Mimicry
Cell plasticity plays an important role in the neovascularization 

process, associated with extracellular matrix remodeling [20]. 
The de-differentiation of cancer cells to an embryonic or stem-like 
cell phenotype results in tumor plasticity resulting in VM forming 
tumor that express endothelial specific genes [21]. CSCs exhibit 
a plasticity that enables their trans-differentiation into cell types 
of variable linage including endothelial-like and highly replicative 
tumor cells [22,23]. Furthermore, CSCs were observed in VM-
forming tumors including melanoma, glioblastoma, OSCC and 
breast cancer [3,19,24,25].

Aggressive melanoma cells undergoing VM express genes 
relevant to stem cells as well as alternative cell phenotypes. The 
plasticity, multipotency and embryonic-like phenotype defines 
these cells as Malignant Melanoma Stem Cells (MMSCs) [26]. In 
breast cancer cells, holoclones (CSC clones highly expressing 
CD133) were able to form a well-established VM tubular structure 
while meroclones and paraclones (well differentiated clones) failed 
to establish VM networks which highlights the important role CSCs 
play in the formation of VM [27].

Conclusion
Anti-angiogenic agents have been widely accepted as 

an effective anticancer therapy. However, conventional anti-
angiogenic treatments exhibit limited efficacy in preventing tumor 
progression [28]. Common anti-angiogenic drugs like angiostatin 
and endostatin inhibit endothelial cell proliferation and enhance 
endothelial apoptosis resulting in a hypoxic microenvironment 
due to reduced vascular density [29]. Deficiencies in oxygen and 
nutrients contribute to VM formation as an alternative supply 
route, compensating for the loss of vasculature [30]. Tumors 
undergoing VM are typically highly aggressive, malignant and 
resistant to anti-angiogenic therapeutics [31,32]. Consequently, 
routine antiangiogenic therapies can, in part, contribute to disease 
progression. Therefore, it is crucial to develop new treatments 
capable of targeting different types of tumor vasculature; 
angiogenesis and VM, rather than conventional anti-angiogenics.
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