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Abstract

Oxidative stress has been widely studied in experiments and well recognized as an important mechanism involving in aging and various 
diseases, such as cancers, cardiovascular diseases, and degenerative diseases. Based on the supportive findings of experimental research, many trials 
with clinically feasible therapy targeting for oxidative stress have been conducted. Even clinical evidence based on meta-analyses keeps mounting. 
The scope of this article is to review the mechanisms based on basic experiments and available evidence about the clinical application of oxidative 
stress-targeting therapeutic strategies. In addition, specific ways for patients undergoing maintenance hemodialysis, such as electrolyzed-reduced 
water (ERW) for dialysis water, are mentioned.
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Introduction
Oxidative stress is an imbalance between reactive oxygen spe-

cies (ROS) and anti-oxidative capacity in living organisms. Exces-
sive ROS directly react with biologically essential molecules, such as 
proteins, lipids, carbohydrate and nucleic acids, causing structural 
and functional damage in cells and inducing consequent diseases. 
ROS also act as second messengers triggering the caspase cascade  

 
in apoptosis [1]. Thus, to reduce or inhibit overwhelming produc-
tion of ROS is one of two main domains of the oxidative stress tar-
geting therapy. The other domain is to counter-balance or scavenge 
ROS through anti-oxidative therapy with refreshment or augmen-
tation of anti-oxidative capacity. The representative targets of an-
ti-oxidative therapy based on experimental mechanisms are listed 
in Table 1. 

Table 1: Targets based on experimental mechanisms for oxidative stress.

Production of Reactive Oxygen Species (ROS): To reduce or inhibit overwhelming production of ROS

Electron transportation chain reactions

Xanthine oxidase

Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase)

Myeloperoxidase (MPO)

others

Anti-Oxidative Capacity in the Body: To counter-balance or scavenge ROS with refreshment or augmentation of anti-oxidative capacity

Enzymatic Anti-Oxidative Capacity
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Superoxide dismutase (SOD)

Catalase (CAT)

Glutathione peroxidase (GSHPx)

others

Non-Enzymatic Anti-Oxidative Capacity

Vitamin C (ascorbic acid)

Vitamin E (tocopherols)

Glutathione (GSH)

N-acetylcysteine (NAC)

others

Production of Reactive Oxygen Species (ROS)

ROS are not only evocable from various exogenous resources 
but also endogenously generated in our own bodies. Some domi-
nant, endogenous sources of ROS production are reviewed. Nor-
mally, almost 90% of cellular ROS are the by-products of electron 
transportation chain (ETC) reactions, major sites of premature 
electron leakage to oxygen, in the mitochondria [2]. ROS are also 
produced by xanthine oxidase, involving the catabolism of purines. 
In stimulated neutrophil white blood cells, NADPH oxidase (nic-
otinamide adenine dinucleotide phosphate oxidase), an enzyme 
complex in the membranes of phagosomes, exaggerates ROS to kill 
engulfed microorganisms. As well, myeloperoxidase (MPO) is abun-
dantly expressed and produces hypochlorous acids (HOCl) to carry 
out the antimicrobial activity.

Strategies to Reduce ROS Production

To reduce ROS production in mitochondria, some specific in-
terventions to modify the reactions of ETC have been proposed [3]. 
While induction random mutagenesis of ETC subunits is not viable, 
using RNAi technology to reduce the concentration of respiratory 
complexes is easily achieved in invertebrate models. Regarding 
substituting the complex enzymes producing damage with more ef-
ficient enzymes, it has been explored in experimental methods us-
ing alternative enzymes to bypass Complexes III and IV [4] or using 
NADH dehydrogenase internal 1 (NDI1) to bypass Complex I [5]. 
Yet, no results of clinical trials have been reported. Widely used in 
daily practice, xanthine oxidase inhibitors include purine analogues 
like allopurinol, and others, like febuxostat. Allopurinol, as a struc-
tural isomer of hypoxanthine (a naturally occurring purine in the 
body), competitively inhibits xanthine oxidase. 

Febuxostat works by non-competitively blocking the molyb-
denum pterin center, the active site of xanthine oxidase. Not only 
in basic researches but also in many clinical trials [6,7] the bene-
ficial effects of the pharmaceutical inhibitions of xanthine oxidase 
have been shown in various disease conditions involving oxidative 
stress. Regarding inhibition of the family of NADPH oxidase (NOX), 
the reasonable approaches include inhibition of assembly, subcellu-

lar translocation, post-transductional modifications, calcium entry/
release, electron transfer, and genetic expression [8]. Small mole-
cule inhibitors, like sulfhydryl-modifying reagents, offer a powerful 
tool in pathological conditions because it completely inhibits su-
peroxide production due to their high affinity towards targets [9]. 
Membrane channel blockers, such as felodipine and amolodipine 
[10] also act as NOX inhibitors through blocking the activation of 
calcium channels and NOX-derived ROS production by angiotensin 
II. The effects of peptide inhibitors have also been experimentally 
explored [11]. Although there have been some experimental data 
suggesting NOX inhibitors, via reducing ROS-mediated stress, be 
beneficial in various malfunctions and diseases, these compounds 
have not been used clinically, perhaps concerning about safety, se-
lectivity, toxicity, bioavailability and significant side effects. The re-
sults of a clinical trials of GKT137831, an inhibitor of NOX isoforms, 
are pending [12]. For inhibition of MPO, two possible general mech-
anisms have been considered to intervene [13]. The first is develop-
ing substrate blocking H2O2 from accessing active site, heme center 
of the enzyme, and rendering enzyme inactive in heme-dependent 
peroxidase and HOCl formation. 

Another mechanism involves competition between inhibitory 
compound and enzyme substrate for the active site of the enzyme. 
The effects of both reversible and irreversible blockers have been 
demonstrated in many experiments [14,15]. Nevertheless, evidence 
showing potency and safety of MPO inhibitors in human studies is 
lack yet. The clinical trials with irreversible 2-thioxanthine MPO 
suicide substrate, (S)-3-((tetrahydrofuran-2-yl)methyl)-2-thioxo-
1,2,3,7-tetrahydro-6H-purin-6-one (AZD5904) was tested in Phase 
I clinical trials for a treatment of chronic obstructive pulmonary 
disease and multiple sclerosis by AstraZeneca were, however, dis-
continued [16]. Another randomized trials with irreversible MPO 
inhibitor, AZD342, with structural formula of the compounds is 
1-(2-Isopropoxyethyl)-2-thioxo-1,2,3,5-tetrahydropyrrolo(3,2-d)
pyrimidin-4-one, were also discontinued due to lack of efficacy 
[17].

Anti-Oxidative Capacity in the Body

Anti-oxidative capacity consists of enzymatic and non-enzy-
matic (or anti-oxidants) components. Large molecular Anti-oxida-
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tive enzymes, such as superoxide dismutase (SOD), catalase (CAT), 
and glutathione peroxidase (GSHPx), catalyze ROS to less detrimen-
tal substrate and prevent them from attacking essential molecules. 
SOD dismutates O2·- into H2O2 to avoid accumulation to toxic levels. 
Three isoforms of SOD are found: cytosolic copper–zinc-dependent 
form (CuZnSOD, SOD1), the mitochondrial manganese-dependent 
form (manganese-dependent SOD [MnSOD], SOD2), and the extra-
cellular copper-zinc-dependent form (extracellular SOD [ecSOD], 
SOD3). CAT, as a peroxisomal protein in mammalian cells, converts 
H2O2 into H2O and O2·-. GPx, located in the mitochondria and cy-
tosol, detoxifies H2O2 and hydroperoxides (ROOH) into H2O and 
alcohols (ROH), respectively. Small-molecule antioxidants, such as 
vitamin C, vitamin E, glutathione (GSH), N-acetylcysteine (NAC), 
and other antioxidants, scavenge ROS by neutralize them directly. 
Vitamin C (ascorbic acid), water-soluble, mainly scavenges ONOO−, 
NO, and HOCl but also quenches ·OH, and O2·-. Through the ascor-
bate peroxidase reaction, it reduces H2O2 to H2O. In addition, ascor-
bic acid also helps to restore or rescue other small molecules such 
as α‐tocopherol, GSH, urate and β‐carotene [18]. Vitamin E, an ef-
fective lipid soluble antioxidant, protects cell membranes against 
lipid peroxidation by directly scavenging lipoperoxyl radicals [19]. 
Glutathione, γ‐glutamylcysteinylglycine, is the major non-enzymat-
ic antioxidant, is a ubiquitous tripeptide, either in reduced (GSH) or 
oxidized form (GSSG), regulating intracellular redox homeostasis. 
GSH scavenges H2O2, O2·- and ·OH directly. Besides, GSH can restore 
ascorbic acid via the ascorbate‐GSH cycle [18]. NAC not only pro-
vides cysteine for synthesis of glutathione, but also has the ability 
to scavenge ROS directly. 

Strategies on Enzymatic Anti-Oxidative Capacity

In both prokaryotes and eukaryotes, SODs have shown to play 
a role in protecting enzymes and proteins against oxygen toxicity 
[20]. A meta-analysis has concluded that measurement of blood 
SOD, especially in erythrocytes, could potentially be used as a di-
agnostic and monitoring marker in patients with gastric cancer 
[21]. The therapeutic effects of supplement of SOD have also been 
shown in animal models [22]. The primary results are promising 
in a phase 1b/2a trial about intravenous infusion of SOD mimetic 
GC4419 for alleviation of chemoradiotherapy-induced oral muco-
sitis [23]. However, before supplement of SOD could be accepted as 
a standard therapy, more evidence based on more clinical trials is 
necessary. CAT plays an important role in cell defense against oxi-
dative damage by H2O2, which forms other ROS through the Fenton 
reaction and acts as a second messenger involving many biological 
processes including changes of morphology, proliferation, NF-κB 
signaling, apoptosis and so on [24]. 

In addition to the dominant ‘catalatic’ activity (decomposition 
of H2O2), CAT can also decompose peroxynitrite, oxidize nitric ox-
ide to nitrite [25]. Many studies have demonstrated that CAT ex-
pression is altered in cancer cells, and CAT is proposed as a future 

therapeutic target using pro-oxidant approaches [26]. However, 
there is no clinical trial showing the therapeutic effects of sup-
plement or augmentation of CAT yet. Glutathione peroxidase 4 
(GPX4) constitutively control ferroptosis, a form of regulated cell 
death characterized by iron-dependence and lipid hydroperoxides 
accumulation. And, it was proposed directly targeting glutathione 
peroxidase 4 may be more effective than disrupting glutathione 
on ferroptosis-based cancer therapy [27]. Although the theoretical 
mechanisms have been proposed, there is no clinically feasible in-
tervention directly targeting GPX yet.

Strategies on Non-Enzymatic Enzymatic Anti-Oxidative 
Capacity

The molecular mechanisms of anti-oxidative effects of vitamin 
C have been widely recognized. Considering its ready availability, 
water solubility, and safety even with high dose as 3-10g per day, 
vitamin C, dietary supplement or intravenous, has been tested in 
many clinical trials and many meta-analyses have been reported 
[28,29]. However, no definite clinical benefits have been proved in 
certain conditions, such as various cancers [30] and cardiovascular 
diseases [31]. Based on the registration database of the Clinical Tri-
als.gov., there are still plenty of clinical trials are ongoing. Vitamin 
E actually includes four tocopherols and four tocotrienols. Out of 
four isoforms of tocopherols, α‐tocopherol is the most abundant. 
The molecular mechanisms of anti-oxidative effects of vitamin E 
have also been widely clarified. Regarding its fat solubility, vitamin 
E sometimes are tested with water-soluble vitamin C for synergic 
effects or just for comparisons. There are also many meta-analy-
ses in the literature [32]. However, evidence supporting the clini-
cal benefits of vitamin E supplementation for various conditions is 
still controversial. Even all-cause mortality might be increased with 
high-dose vitamin E (≥400 units/day) [33]. Based on the registra-
tion database of the ClinicalTrials.gov., there are also plenty of clin-
ical trials are ongoing. Both of glutathione and its precursor, NAC, 
have been recognized as effective antioxidants in various experi-
mental models. Intact form of glutathione, used as dietary nutrient 
supplement, is absorbed somewhat in the intestines, but it must be 
metabolized to form L-cysteine before being taken up into cells. In 
contrast, NAC provides L-cysteine efficiently at a lower financial 
cost than glutathione. Actually, NAC is inexpensive and fairly safe. 
Even an extremely high dose of N-acetylcysteine, totally 1,330mg 
per kilogram body weight orally in three days, is the FDA-approved 
protocols for the treatment of acute acetaminophen ingestion [34]. 
Therefore, supplement of NAC, rather than glutathione, has been 
adopted in many clinical trials. The clinical benefits of NAC supple-
ment for various diseases have been supported by abundant evi-
dence based on the clinical trials and even meta-analyses [35,36] 
Based on the registration database of the ClinicalTrials.gov., there 
are also plenty of clinical trials are ongoing.
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Specific Anti-Oxidative Stress Strategies for Hemodialy-
sis Patients

 As introduced above, supplement of anti-oxidants is easier and 
more feasible for clinical use than interventions directly targeting 
the enzymes involving production or scavenging processes of ROS. 
Therefore, it is not surprising many clinical trials with supplement 
of various anti-oxidative substances have been conducted and are 
ongoing. However, most of the anti-oxidants are taken orally or 
administrated intravenously. During an ordinary 4-hour hemodial-
ysis session, the neutrophils stimulated in the extracorporeal cir-
cuit release ROS, and oxidative stress is exaggerated, determined 
by checking ROS in blood. Thus, vitamin C infusion and vitamin E 
coated-dialyzer have been tried to reduce the hemodialysis-relat-
ed oxidative stress [36]. Besides, hemodialysis with electrolyzed 
reduced water (ERW) has been shown to reduce hemodialysis-in-
duced oxidative stress and subsequent adverse influences in pa-
tients undergoing hemodialysis [37-39]. The long-term beneficial 
effects of ERW for hemodialysis patient are based on two features: 
ERW contains active atomic hydrogen which have reactive oxygen 
species (ROS) scavenging ability; the patients are treated with 120 
L anti-oxidative dialysis water thrice a week, more than 25 times of 
normal water intake (2 L per day and 7 days a week).

Conclusion
The rationales of oxidative stress targeting therapy are based 

on broad knowledge of the detrimental effects of oxidative stress 
and supported by extensive evidence from abundant experiments. 
In comparison to the possible interventions to reduce or inhibit 
overwhelming production of ROS via experimental modification 
of intracellular enzymatic pathways, the methods regarding count-
er-balancing or scavenging ROS through refreshment or augmen-
tation of anti-oxidative capacity, especially oral supplement of 
anti-oxidants, are more practical and have been widely applied to 
clinical conditions. Beyond traditional supplement pathways, such 
as orally or parentally, using ERW for dialysis water is a specific way 

for patients undergoing hemodialysis. 
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