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Abstract

Cancers represent, together with cardiovascular diseases, the most important cause of death in the industrialized countries. Fortunately, many 
cancer types have been successfully counteracted by following different strategies, comprising chemio- and/or radio-therapies, new drugs design and 
immuno-therapy. The success of these therapies, however, often depends on early diagnosis, that is very difficult to get for some tumors, especially 
the ones affecting internal organs, such as lung, ovary, liver, pancreas. Therefore, the curability of these tumors remains low and, consequently, 
the related deaths high. In this scenario, although rarely representing the first choice, protein therapy could be a fruitful approach to counteract 
incurable tumors. RNases, which are able to attack many RNA types, can become tools to block an uncontrolled cell replication and, consequently, 
cancer development. In particular, the amphibian RNase ranpirnase, commonly called onconase (ONC), showed in the recent past to be active against 
many tumors either in vitro or in vivo. Nevertheless, its renal toxicity, although reversible, has limited its use in therapy. However, the most recent 
results obtained in vitro with ONC are presented here, and possible therapeutic strategies based on ONC self- or hetero-oligomerization are as well 
suggested to overcome renal toxicity.

Keywords: Ribonucleases; Onconase; Antitumor Activity; ImmunoRNases; Oligomeric RNases; 3D Domain Swapping

Abbreviations: AA: Aminoacid; RNase(s): Ribonuclease(s); ONC: Onconase; ANG: Angiogenin; pt-RNases: Pancreatic type-RNases; BS-RNase: 
Bovine seminal RNase; RI: RNase Inhibitor; EDC: 1-ethyl-3-(3-dimethylaminoisopropyl) carbodiimide

Introduction 
Ribonucleases 

Ribonucleases (RNases) form a very large bacterial or eukaryotic 
enzymes group [1] and are known to catalyze the hydrolysis of 
many RNA substrates [2]. This makes their classification not easy, 
also because a cell contains about twenty different distinct RNases 
often characterized by different substrate specificities [3]. However, 
a possible classification can differentiate intracellular RNases from 
the ones secreted extracellularly. These are called secretory RNases 
[1,4] and many of them form a large super-family [5] in which is 
also included an amphibian RNase, called Onconase, that displays a 
remarkable antitumor activity [6,7]. Its main features are described 
in this report. 

Pancreatic-type RNases and Onconase: crucial features 
for cytotoxicity 

In the group of the secretory RNases, an increasing number 
have been characterized since the 60ies, and many of them have  

 
been classified as “pancreatic-type” (pt)-RNases [5,8]. This term 
originates from the most studied enzyme, the 13.7 kDa and 124 
aminoacid (AA) residues-long bovine pancreatic, monomeric RNase 
A (Figure 1A) [9,10]. Incidentally, the members of this super-family 
refer sometimes to human pancreatic RNase, called HP-RNase, or 
RNase 1 (Figure 1B) [8,11]: although displaying a high identity 
sequence with RNase A, it is definitely more basic than it and is not 
expressed only in the pancreas, but almost in all tissues [12]. Besides 
RNase A and RNase 1, other variants are included in the mentioned 
super-family, even if, again, some of them are not secreted by 
the pancreas. The most important members display remarkable 
biological activities, as it is for the natively dimeric cytotoxic bovine 
seminal RNase (BS-RNase), that exists as an equilibrium between 
two isoforms, as reported in (Figure 1C) [13,14]. and for human 
RNase 5 [15]. This latter variant is also called angiogenin (ANG, 
(Figure 1D) because it crucially contributes to the formation of new 
blood vessels thanks to its ribonucleolytic activity [16,17]. Also 
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other important RNases, although belonging to non-mammalian 
species, such as birds or amphibians, are known [18,19]. Some of 
them are included in the pancreatic-type super-family principally 
because of their high structural homology with the mammalian pt-
RNases [6]. In particular, the 114 AA residues amphinase and, above 
all, the 104 AA residues frog ranpirnase, or P-30 protein, extracted 
from Rana Pipiens oocytes, deserve to be noted [7,20]. This 11.8 kDA 

variant is commonly called onconase (ONC, (Figure 1F) because it 
exerts a remarkable antitumor activity against many cancer types 
[6,7]. Moreover, ONC is known to display also an antiviral activity 
against HIV-1 or, more recently, Ebola [21,22]. ONC is considered 
a pt-RNase because it satisfies the three main features for which a 
RNase can be associated with the super-family [5]:

 
Figure 1: Structures of some important pt-RNases.
RNase A; B) HP-RNase, or RNase 1; C) natively dimeric BS-RNase: two isoforms in equilibrium exist, one natively swapping their N-termini, the 
other dimeric only through the indicated disulphides; D) human Angiogenin, ANG; E) amphibian Onconase, ONC.

1. a high homology folding represented by a “V-like”, or 
“kidney-like”, shape to accommodate the RNA substrate in the 
relative cavity [23], 

2. the catalytic triad, formed by one Lys and two His residues, 
i.e., H10/K31/H97 for ONC, while for RNase A is H12/K41/
H119,

3. the distribution of the basic charged residues, the majority 
of which must be located in the proximity of the active site 
[5]. Importantly, at least a minimal ribonucleolytic activity is 
mandatory for RNases to exert their remarkable biological 
activities, as it is for ANG [24], but also for ONC [6]. Indeed, 
ONC cytotoxicity against malignant cells definitely emerges 
[25-27]. In this context, beyond BS-RNase and, especially, ONC, 
also the bacterial Barnase and the natively dimeric Binase 
[28], are definitely cytotoxic [29]. However, ONC is the most 
considered RNase anticancer tool [30]. 

Determinants of the Antitumor activity of pt-
RNases and ONC 

The efficacious action of ONC revealed to be particularly 
true for incurable solid tumors, as emerged from the use of ONC 

against human lymphoma [31], glioma [32], pancreatic carcinoma 
[33], or, more recently, melanoma cell lines [34,35]. In particular, 
an autophagic cell death effect has been detected in ONC-treated 
Panc-1 and PaCa-44 tumor cells [33], while ONC affects also NF-
κB and TNF-α expression in A375 melanoma cells [34,35]. Strong 
synergism was reported in early studies with ONC combined 
in vitro with tamoxifen [36], or trifluoroperazine [37], or also 
lovastatin [38] to counteract pulmonary A549 carcinoma cells. 
Importantly, an ONC antitumor action had been registered also in 
vivo, in particular against non-resectable mesothelioma and non-
small-cell lung cancer [39-41]. However, this application resulted 
to be not completely successful because nephrotoxicity emerged in 
many patients after repeated ONC administrations, although this 
side-effect disappeared after discontinuing the treatment [42]. 

Cellular internalization 

The main obstacle encountered by extracellular RNases to 
exert their action is represented by cell internalization. This occurs 
through endocytosis [43], but is possible only through a fruitful 
interaction with the cell membrane occurs. However, the possibility 
for ONC to enter the cell thanks to the mediation of a receptor has 
been reported as well [44,45]. Then, Sundlass et al. [46] revealed 
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that both electrostatic forces and specific interactions are crucial 
for a RNase to determine the time spent near the cell surface, a 
determinant for its consequent internalization [46]. In addition, 
Notomista & coll. reported that either native or artificial dimeric 
cytotoxic RNases strongly affect membrane aggregation, fluidity 
and fusion [47]. Importantly, if we consider that a RNase should be 
selectively cytotoxic against malignant cells, that are characterized 
by a more negatively charged membrane than the normal ones, the 
basicity of each RNase is important to win this challenge. Then, 
also the specific RNase orientation is important for a successful 
approach to the membrane, as it has been demonstrated for ONC 
or also BS-RNase [46-49]. Hence, the orientation of the basic 
charges might affect also the cytotoxic potential of other RNases. 
In addition, ONC seems to approach the cell membrane differently 
from other pt-RNases [46]. Moreover, the cellular internalization 
event can be evaluated as to be residue-specific because wt-ONC is 
less efficiently internalized than the so called “R-mutant”, in which 
all Lys residues except the catalytically active one are replaced by 
arginines [50]. However, if the RNase net basic charge is randomly 
increased, the relative advantage can be counteracted by the 
increase of the enzyme affinity toward the negatively charged 
cellular RI [51]. 

Some discordant data have been reported about the 
mechanism of ONC cell internalization: Haigis & Raines wrote 
that ONC is internalized in early endosomes of HeLa and K562 
cells by a clathrin- and caveolae-independent mechanism [45], 
while Rodriguez & coll. reported that Jurkat cells can endocytate 
ONC through a dynamin-dependent route, presumably through 
a pathway mediated by clathrin/AP-2 [52]. These data, although 
apparently controversial, suggest that ONC may follow different 
routes to cross the membrane of different cell lines. 

Evasion from the RNase inhibitor 

Another huge obstacle for the biological activity of a RNase is 
represented by its interaction with the cellular RNase Inhibitor (RI). 
RI is a 50 kDa negatively charged, horseshoe-shaped, and cysteine- 
plus leucine-rich macromolecule ubiquitously expressed in almost 
all cells [53,54]. For many years, RI has been considered present 
only in the cytosol, but its presence has been detected also in cell 
mitochondria and nuclei [55]. RI can form very tight complexes 
with many pt-RNases, such as RNase A [56], RNase 1 [57], ANG [58], 
and also with RNase 2, that is the eosinophil derived neurotoxin 
(EDN) [59]. The RNase-RI complexes are accompanied with Kd 
values comprised between the pico- and the femto-molar range 
[60]. Their structures explain why RI inactivates the RNase moiety 
that remains caged inside the RI cavity [61]. RI is highly conserved 
in mammals, but is present also in non-mammalian species [62]. 
Instead, in contrast with almost all secretory pt-RNases, ONC 
can evade RI because it is devoid of the flexible regions, or loops, 
in which reside the key-residues allowing RNases to fruitfully 

interact with RI [44,61]. For this reason, ONC can actually display 
a remarkable cytotoxicity by exerting its ribonucleolytic activity 
toward t-RNAs [63] and arresting the G1 cell cycle phase [7,20]. 
Besides, it is important to note that also the mammalian BS-RNase 
is cytotoxic because, being natively dimeric, can sterically evade 
RI [64,65]. On the contrary, its monomeric derivative, although 
being enzymatically active, is not cytotoxic because is sequestered 
by RI [66,67]. However, the sensitivity toward RI is not the unique 
determinant hindering cell cytotoxicity: indeed, non-cytotoxic 
RNases were unable to reduce HeLa cells viability also after 
silencing the RI expression [68]; instead, non-covalent dimers of 
RNase A, although being partially RI-sensitive [69] and definitely 
inactive against pancreatic cancer cell lines [70], showed to be 
cytotoxic against leukemia cells and also against melanoma in mice 
[71,72].  

Native or artificial oligomeric RNases and their 
possible application in therapy 

If a RNase can be induced to oligomerize, this would make it 
bulkier than its native monomer, and the charge density of its 
moiety augment likewise. This event would help the enzyme 
internalization in tumor cells and would allow its evasion from 
the cellular RI as well [67]. Then, the augment of ONC derivatives 
dimensions could represent a successful strategy if we consider 
that ONC-based therapy had been limited by adverse effects at 
the expense of the kidneys: ONC antitumor activity would be 
conjugated, in fact, with a simultaneous low renal uptake. Protein 
oligomerization may occur spontaneously, or could be induced also 
by the cell environment or, again, by an in vivo context [65,73,74]. 
Within mammalian RNases, only BS-RNase is nowadays known to 
be natively homo-dimeric [14]. This is principally ascribable to two 
antiparallel disulphides involving the two Cys31 and 32 residues 
that are present in both subunits [13,75], while are absent in ONC 
and also in other monomeric RNases. 

Covalent or non-covalent ONC oligomerization 

RNase oligomerization can be provoked also in vitro to obtain 
different products. Incidentally, RNases or ONC oligomerization 
can be induced to form covalently linked derivatives upon 
conjugation with bifunctional or multifunctional cross-linkers, 
like diimidoesters or maleimides. In this way, stable hetero- or 
homo-oligomers can be produced, upon modifying one or more 
AA residue(s). Therefore, any chemical modification can somehow 
affect the properties of native RNases and, thus, negatively affect 
its biological activities. Nevertheless, this approach has been often 
exploited by RNase A permitting to obtain products displaying 
promising, but not conclusive, results in terms of high cytotoxic 
potential. This was, very probably, because of the excessive 
involvement and modification of the basic Lys residues [76-78]. 
Again, maleimides have been instead used with a properly designed 
ONC mutant to obtain bulky dimer(s) or trimer(s) (Figure 2A) 
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that, however, were not more cytotoxic, in vitro, than monomeric 
ONC [79]. Nevertheless, and importantly, these derivatives were 
characterized also by dimensions that overpassed the calibre of 
the glomeruli [79], and their use could be reconsidered in the next 
future. 

Immuno-RNase protein fusion strategy for ONC 

To obtain larger RNase moieties without affecting their 
activity properties, the protein-fusion technique has been widely 
used especially with RNase 1 [80,81], but sometimes also with 
ONC [82]. Thanks to protein engineering, ONC derivatives have 
been designed with different peptide linkers and expressed in 
conjugation with many adducts [82], such as antibody fragments, 
human serum albumin, dengue virus-derived peptide, and also the 
transferrin N-terminal domain ((Figure 2B), upper panel) [83-85]. 
All derivatives displayed remarkable cytotoxicity against many 

cancer cell types, and in some cases also in an in vivo context, in 
mice [83,86]. Furthermore, this augmented antitumor activity 
could have been paralleled, in a possible in vivo application, by a low 
undesired renal filtration [79]. Then, differently from microbial or 
plant immunotoxins, human Immuno-RNases lack immunogenicity 
or nonspecific binding and toxicity that could damage also normal 
cells [87]. Indeed, clinical trials performed with non-mammalian 
toxins drove sometimes toward even fatal events [88]. Instead, the 
Immuno-RNase 1 fusion derivatives were benign outside cells, and 
not immunogenic as well [80]. Furthermore, the immuno-protein 
fusion approach has been applied also to form ONC “diabodies” 
(Figure 2B), lower panel), i.e., covalent dimers of single chain 
antibody fragments (scFv) connected with the RNase moiety, or in 
other words dimers of the Immuno-ONC derivatives [86,89].  

 
Figure 2: Strategy for ONC oligomerization. 
A) Covalent oligomerization (trimerization) of ONC; adapted from [79]; B) Immuno - RNase (ONC) fusion protein [84,85] and ONC diabody schematic 
structures [86,89]; C) 3D-DS mechanism [91,95-97] and N-swapped ONC dimer model [105] compared with the crystal structure of the RNase A 
N-dimer [107]. FU represents the functional unit reconstituted in the dimer after 3D-DS [96].

Oligomerization through the three dimensional domain-
swapping (3D-DS) mechanism 

RNases can form supramolecular structures also through a 
non-covalent self-association mechanism called three dimensional 
domain-swapping (3D-DS). Firstly described and analyzed by 
Eisenberg, but then also by other groups [90-95], 3D-DS involves 
many proteins [90,96,97] and partially violates the “Anfinsen 
dogma” which states that a protein AA sequence dictates a unique 

folding [98]. Indeed, the flexible loop(s) of a protein can adopt 
variable conformations corresponding to more than one energy 
minimum [91]. This possibility allows the domains linked to the 
flexible protein segments to adopt different orientations and 
undergo a reciprocal exchange (Figure 2C), upper panel). This 
drives to form a non-covalent dimer, or dimers, or even larger 
oligomers, as it is for RNase A and BS-RNase [65,99-101] if more 
than a single flexible loop is present [96,97]. The domain detached 
from the native monomer can reconstitute the original contacts 
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in each composite, functional unit (FU) of the oligomer [96]. The 
FU overlaps the native monomer (Figure 2C), upper panel), while 
the folding of the dimer/oligomer parallels the monomer one, with 
the exception of additional, so called open interface(s) [91]. The 
domains involved in 3D-DS are often the protein N- or C-termini, 
or both, as it is, again for RNase A and BS-RNase [65,96,99,101]. 
Oligomerization is often accompanied with increased RNases 
enzymatic and biological activities, being the latter ones sometimes 
absent in the native monomer [72]. 

 3D-DS dimerization of ONC: ONC can penetrate cancer cells 
either for its high basicity or to a favorable interaction with the 
sialic acid moieties present on the membrane of malignant cells 
[102]. Afterwards, ONC evades RI as mentioned before [60] and 
can attack tRNAs or other substrates, such as miRNAs, to exert its 
cytotoxic action [21,103,104]. Hence, it would seem not necessary 
to produce ONC oligomers to design anticancer therapies [30]: 
indeed, many positive results have been reached with monomeric 
ONC both in vitro and in vivo against several incurable tumors [82]. 
Furthermore, ONC was recently found to enhance the activity of 
new generation drugs that are active against the BRAF-mutated 
A375 melanoma cell line [34], and also to restore cytotoxicity vs the 
same A375 cells that became resistant to dabrafenib [35]. However, 
the although reversible renal toxicity lowered ONC therapeutic 
applications [42], and the possibility to enlarge the dimensions 
of ONC moiety/ies remains a promising strategy to allow a more 
efficacious block at the glomerular barrier. This would increase the 
half-life of circulating ONC derivatives at the same time, and the 
aforementioned fusion immune-ONC derivatives are in line with 
this strategy [83]. Then, notwithstanding its remarkable stability 
(TM ~90°C), ONC has been discovered to form a N-swapped dimer 
(ONC-D, (Figure 2C), lower panel) [105], upon being lyophilized 
from 40% acetic acid solutions, like RNase A [106]. The ONC-D 
structure has been modeled [105] as to be similar to the N-swapped 
dimer of RNase A (Figure 2C), lower panel) [107]. Notably, low 
concentrations of ONC-D displayed to be more active against 
pancreatic cancer cells than native monomer [105]. Unfortunately, 
ONC can swap only its N-terminus, because its C-terminus is locked 
by a disulphide bond involving Cys87 and Cys104, i.e., the last AA 
residue. The impossibility to swap more than one domain definitely 
reduces the self-association propensity of a protein [97]. Moreover, 
some ONC variants lacking the disulphide blocking the C-terminus 
are known to be less stable than the native enzyme [108,109]. 
Consequently, the only way nowadays feasible to obtain large ONC 
homo-oligomers is the use of multifunctional maleimides producing 
covalent, stable derivatives (Figure 2A) [79]. However, a recent 
study has combined the features of the ONC C-terminal loop with 
the ones of RNase A to build a chimera that increased the tendency 
of the mammalian enzyme to oligomerize through 3D-DS. Indeed, 
the RNase A native cis configuration of the Pro114 residue residing 
inside the flexible 112-115 residues loop makes its C-terminus 

difficult to be swapped [110], therefore requiring high energy to 
succeed [111,112]. Instead, the loop present in ONC, shorter and 
devoid of this proline residue, makes the RNase A mutant more 
prone to oligomerize [113]. The antitumor activity of the resulting 
oligomers was not tested because mutations did not affect the 
determinants crucial for cytotoxicity. Nevertheless, this result may 
suggest to deepen the analysis and combine the most advantageous 
features of RNase A and ONC. This could allow to build chimeras by 
combining the cytotoxic properties of ONC with the determinants 
making pt-RNases prone to oligomerize, and contemporarily 
reduce undesired side-effects. Once oligomers larger than dimer(s) 
being obtained, these species could be covalently stabilized by 
using condensing agents, as it had been performed with the RNase 
A C-dimer [114] with 1-ethyl 3-(3-dimethylaminoisopropyl) (EDC) 
carbodiimide [115].

Conclusion 

The new data registered in the last decade by measuring the 
in vitro ability of ONC to counteract incurable tumors are certainly 
promising [30-32,34,35,70]. However, to obtain more satisfactory 
results, the following strategies could be experimented: 

I. artificial protein cross-linking (Figure 2 A)

II. immuno-fusion protein derivatives (Figure 2B), 

III. protein engineering devoted to enlarge the tendency 
of ONC 3D-DS self-association (Figure 2C). This could allow 
to design and produce active derivatives that may become 
efficacious tools able to counteract incurable cancers , but with 
negligible side effects. 
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