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Introduction
Humans should never be viewed as a single species that is apart 

from nature. As this opinion article will illustrate, such a view is not 
only archaic, but it can enable practices that readily damage human 
life on Earth. 

In our most basic and healthy form, we are a magnificent 
composite of a mammalian body combined with the tens of 
trillions of human resident microbiota (the bacteria, archaea, 
viruses, protozoa, and fungi) along with their genes. The human  

 
microbiota inhabit several different locations of our body (e.g., gut, 
skin, airways, urogenital tract, breast tissue, breast milk). Most of 
these trillions of microbes are not just friendly to our body, but play 
essential roles in our overall development and function influencing 
such overarching factors as circadian rhythms and lifespan 
[1]. Our composite life form is also referred to as a holobiont or 
superorganism.

In this regard we are much like a coral reef. As a fundamental 
composite of life on Earth, we are uniquely suited to both exist and 
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function on Earth. In fact, the human superorganism body functions 
much like a mobile vessel or grand repository that accumulates 
and distributes microbes as we move through our daily life [2]. 
During prior centuries we may not have known about the biological 
complexity of humans, but our lack of knowledge did not detract 
from the reality across millennia of our ancestors. Our ancestors 
were closer to the microbiota of soils, crops, and animals than many 
of us are today. They also consumed naturally probiotic-laden, 
fermented foods in most, if not all, cultures [3,4].

A 21st century examination of the true nature of humans shows 
that we embody Earth’s predominant life forms, partner with those 
life forms, rely on those life forms, interact with those life forms 
even outside our own body, and help to constantly distribute/
redistribute those life forms across the globe by our very existence. 
Of course, the life form most predominate on Earth and our 
copartner are the microbes. Recently, a collaborator and I wrote four 
review articles detailing the need to approach healthcare, medicine, 
safety, pain management public health and holistic wellbeing by 
placing the human microbiome front and center. Nowhere was this 
more obvious than in the care of children after adverse childhood 
events [1,5,6]. This priority ensures not only that the attention is 
placed on better health for the whole human (the superorganism), 
but also ensures that we all go through life better connected to 
Earth’s natural internet of microbial life. To deplete the microbiome 
from our human superorganism bodies weakens our bond with 
each other and disconnects us from life on Earth.

Because the human microbiome is a slight majority of the body’s 
cells [7] and an overwhelming majority of our genes (hundreds of 
times more than the number of our human chromosomal genes) 
[8], it is well overdue that medicine, public health, public policies, 
and we the people as individuals understand and comprehensively 
embrace precisely who we are biologically: Earth-connected 
superorganisms. This article has a goal of taking that next step 
to bring public policies into sync with our fundamental nature 
and ensure that any policies support rather than degrade and/or 
destroy the human superorganism.

This opinion article highlights three major 
points
1.	 There is ongoing, wanton destruction of the human microbiome 

that compromises human vitality and resiliency at both the 
individual and global population levels.

2.	 The constant message through various media that humans 
are underserving of their place on Earth is buttressed by the 

destruction of human body integrity.

3.	 Given government approved human biological degradation, 
the Siren’s song of easing life’s struggles by becoming a 
“Transhuman” machine is a final step in isolating us from life 
on Earth.

Our Microbial Co-Partners Are Critical for Our Health, 
Vitality, Unified Consciousness, And Integrity

Being a superorganism/holobiont composed of thousands of 
different species is not a luxury for us. It is a necessity. It is how 
we are designed to function. Many of our microbial copartners 
are intimately connected to our various systems biology units, 
tissues, and organs. Our microbiota can control many aspects of the 
development and proper function of our systems using a variety of 
direct, indirect and epigenetics strategies [1,9-13]. Our microbiota 
are also critical as they provide: 

1.	 A connection to the world outside of our body via the internet 
of microbes [14]. 

2.	 A filter and gateway to our internal mammalian body [15,16]

3.	 A front-line defense against pathogens via a process known 
as colonization resistance [Kim et al., 2017 17]. Remarkably, 
our human microbiota display the properties of memory, 
computation and statistical physics, environmental and 
networked sensing, electro-chemical communication as well 
as physical/chemical shape-shifting and consciousness [18-
24]. 

 Our microbes can use extracellular vesicles as one route of 
both interbacterial communication and bacterial-systems biology 
regulation [25,26]. Recently, a curated microbial body map was 
created depicting our microbe distribution across 22 human body 
sites as well as the associations of these microbes with health and 
disease [27]. It is becoming increasingly difficult for the outdated 
scientific dogma describing humans as but a single species among 
many on Earth to continue when the scientific reality is that our 
body in a fully conscious, healthy form is more like an ark that 
has been loaded with thousands of different species in double 
digit body sites as a representation of Earth’s predominant life 
form: the microorganisms. This 21st century scientific view of the 
fundamental nature of the human superorganism including our 
natural interconnectivity with life on Earth is a game-changer when 
it comes to the debate over the role of humans amid life on Earth. 
(Table 1) [28-39] Illustrates examples of key microbes in different 
body location that carry out significant function for the whole 
human. 
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Table 1: Examples of Key Co-Partner Bacteria That Regulate the Human Body.

Bacteria Location Function Reference(S)

Bifidobacteria particularly B. longum 
ssp. infantis Early infant gut

Facilitates necessary infant immune maturation; reduces 
inappropriate inflammation; protects against the risk of 

later-life allergic diseases 
[28-30]

Akkermansia muciniphila Gut Regulates mucin production/turnover and protects integrity 
of the gut lining [31,32]

Combinations of specific Bifidobacteria 
strain and Lactobaccilus strains Gut Stress resiliency and protection against anxiety [33]

Lactobacillus spp. Vagina and cervical canal Protects against bacterial vaginosis and against recurrent 
miscarriage [34,35]

Lactobacillus spp. Oral cavity Inhibition of Streptococcus mutans biofilm formation and 
promotion of dental caries [36]

Dolosigranulum pigrum in 
combination with Corynebacterium 

pseudodiphtheriticum
Nasal cavity Protective combination against otitis media in childhood [37]

Acintobacter genus Nasal cavity Abundance of this genus appears to reduce the likelihood of 
atopic sensitization in children [38]

Staphylococcus epidermidis Skin Promotes protection of the skin barrier by producing specific 
ceramides [39]

Human Devaluation and The Illusion of Environmental 
Incompatibility

The past century has been filled with what can only be described 
as a devaluation and manipulation of human life. Whether by 
accident or by design, the emergence of formal toxicological safety 
testing paired with formal development of the pharma-medical 
complex have resulted in longer yet sicker lives with an increase 
in both human multimorbidity [40-42] and disabilities [43,44]. 
Population control measures resulted from a combination of global 
wars combined with genocide and/or pseudoscience-justified, 
government inflicted famine (e.g., Lysenkoism) [47]. Increased 
contraceptive practices [48] was combined with regional limits 
on family size (e.g., China) that had impacts on the number of 
abortions, family, human behavior, and gender ratios [49-51]. 

As humans, we have been constantly told that we are destroying 
the planet and selfishly using planetary resources that we do not 
deserve to high and have directly caused certain climate-inflicted 
destruction [52-54]. The message has been clear from alarmists 
that Earth would be a better, idyllic place if only humans ceased 
to exist [55]. The actual nature and status of humans and Earth’s 
environment is just the opposite of the promoted illusion. We are 

a microcosm of life on Earth that has been a part of our inherent 
being despite being under almost constant toxicological assault 
across much of the past century.

We are not a single species nor were our ancestors as those 
who would denigrate humans often promote. There exists a 
biologically sacred bond between the status of our microbiome and 
the systems biology component of the human body. The two must 
be in sync and balanced for our health, well-being, connectivity 
to our environment, and full human capacities to emerge and be 
maintained. When damaged, we are left weak, sick, functionally 
dulled, and increasingly dependent upon the healthcare structure 
and others [6,56]. A prolonged public health and policy assault 
has been waged against our microbiome-systems biology integrity, 
and this has been going on for more than a generation [56]. This 
is illustrated in the health and policy decisions that facilitated the 
damage. The legacy of our damage and human suffering because of 
these public health/policy decisions is detailed in the recent book 
“Tragic Failures: How and Why We are Harmed by Toxic Chemicals” 
[57]. Examples of the prior and present harmful chemicals, foods, 
food additives, and pharmaceuticals that damage our microbiome 
and our body’s functions are shown in shown in Table 2 [58-84].

Table 2: Examples of Widespread Government Regulatory-Sanctioned Practices that Sicken, Biologically Compromise, and/or Degrade the Human 
Superorganism*.

Factor Known Adverse Effect Reference(S)

Elective Cesarian Surgery Lack of Core microbiome transfer to the baby with elevated risk of chronic diseases; surgery-
associated antibiotic administration additionally damaging the microbiome [58-60]

Covid-19 Gene Therapy/
Vaccination (Pfizer)

Postmarketing Safety Data submitted to the FDA by the vendor indicated the observance of more 
than 1,000 forms of adverse side effects/disease conditions following gene therapy/vaccine 

administration. The vaccine fatality rate exceeded that reported for the viral infection. 
[61]
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Covid-19 Drug Treatment: new 
drug remdesivir vs. old off-label 

drug ivermectin

A long standing, Nobel Prize winning human drug, ivermectin, was effectively blocked from 
off-label physician use by various medical/public health organizations. Instead, a new expensive 

drug, Remdesivir, was pushed as the treatment option. A recent study found that one of the 
outcomes of this public health policy push against ivermectin was unnecessary human death.

[62,63]

Glyphosate The antimicrobial is distributed from soils across the food chain damaging the microbiomes and 
physiological systems of many species including humans. [64-66]

Food Emulsifiers Destruction of mucin-regulating gut bacteria (e.g., Akkermansia muciniphila), destruction of the 
gut lining, promotion of chronic diseases. [67]

Artificial sweeteners
Examples: Aspartame, Saccharine, Sucralose, and Acesulfame potassium all reported to decrease 

bacterial diversity, increase gut permeability and/or damage the gut lining, alter mucosal 
immunity and increase inflammation. 

[68,69]

High Fructose Corn Syrup Decreased gut bacterial diversity, impaired gut barrier, elevated risk of metabolic syndrome [70,71]

Antibiotics Without 
Complementary Microbiome 

Therapy
Damage to the microbiomes in several body locations and increased risk of future diseases [72-74]

Non-Steroidal Anti-Inflammatory 
Drugs (NSAIDs)

Microbiota dysbiosis, gut barrier damage, bacterial translocation, potential elevated risk of 
certain pathogen infections [75-77]

Proton Pump Inhibitors
Altered gut microbiota profiles, changes in drug metabolism by gut microbiota, increased 
prevalence of specific pathobionts and increased risk of enteric infections; elevated risk of 

bacterial infection spread to the liver
[78,79]

Selective Serotonin Reuptake 
Inhibitors

Drug effectiveness varies depending upon microbiome composition and antipsychotics can act as 
antibiotics and selectively alter the gut microbiome. [80]

Triclosan Exposure to this antimicrobial exacerbates microbiome-driven colitis and colitis- associated 
diseases [81,82]

Bisphenol A Exposure can cause gut microbiota dysbiosis and predispose for several chronic diseases. [83,84]

See also [6,56].

The Human Superorganism: Naturally Connected to 
Earth

One of the striking findings during the past two decades has 
been the changing view of microorganisms and the human body. 
Thanks to microbiome research pioneers like Élie Metchnikoff, 
Martin Blaser, Rob Knight, Jack Gilbert, Seth Bordenstein, Justin 
and Erica Sonnenburg and many others, we now understand that 
micro-organisms are not merely a chance encounter for the human 
body and one that we should fear because of possible infections. 
Instead, we learned they are a critical and vast component of the 
human body (in the form of multi-body site microbiomes) needed 
for optimal everyday “human” function and health [6,85]. With each 
new discovery of relevance to the human microbiome, we learn 
that microbes are not just tagging along for the human experience. 
They are critical partners crafting our experience. In fact, much of 
what we are in the present reflects our ancestral co-partnership 
with ancestral microbes [86]. They affect not just our metabolism, 
physiology, health, and lifespan, they are preparing their next 
generations of microbes to copartner with our future children. That 
is, if we can halt the practices that have significantly degraded our 
microbiomes [87]. Within our bodies we house a microcosm of the 
most predominant forms of life on Earth. We are a superorganism 
by our very nature.

In The Human Superorganism: How the Microbiome Is 

Revolutionizing the Pursuit of a Healthy Life [2], I likened humans 
to a walking coral reef or a mobile tropical rainforest in our complex 
species composition and capabilities and the molecular synergies 
that result. The irony is that much effort, human energy, financial 
support, and respect for the health and preservation of coral reef 
and tropical rainforest ecosystems has been developed across 
decades. We know the importance of the coral reef and the tropical 
rainforest to planetary health and wellbeing. There is tremendous 
interconnectivity and ecological value in nurturing the health of 
these superorganisms. But we have not yet applied our almost 
sacred commitment to the preservation of coral reefs and tropical 
rainforests to the same multi-species marvel that is our human 
superorganism body. 

One of the major benefits that humans make to Planet Earth is 
to collect and then redistribute microbes as we travel and visit both 
different geographic locations and other humans. I have likened 
us to the American Pioneer horticulturist, John Chapman (also 
known as Johnny Appleseed). Chapman planted apple seeds across 
the Midwest U.S. largely during the first half of the 19th century 
so that the region might benefit from the fruits of apple trees in 
later generations. We, too, can spread health-promoting microbes, 
not to cause disease as might worry germophobes, but rather to 
aid healthy and balanced microbially-laden ecosystems in our 
backyards, cities, and around the world.
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Extremophiles in All the Wild Places Including the 
Human Body

Extremophiles are organisms that have the ability to not 
only withstand adverse conditions but also to thrive in the most 
extreme conditions that Earth has to offer. Microorganisms in this 
category show us the full range of life on Earth. Extremophiles are 
thought to have been the first life on Earth (archaea, bacteria, and 
some fungi), and may also be the best candidates for life on other 
planets [89]. Categories of extremophiles cover a broad range 
of different environmental and functional features. For example, 
they include: acidophiles, alkaliphiles, halophiles, radiophiles, 
piezophiles, psychrophiles, thermophiles [90]. Poly extremophiles, 
where organisms can withstand more than one harsh condition, are 
thought to define the boundaries of areas and possibly planets that 

can support life as we know it [89].

Extremophiles are not just meant for the wildest, most extreme 
habitats on Earth (e.g., Antarctic glaciers, hot springs, the Dead Sea, 
volcanoes, space vacuums, the deepest part of oceans), they are 
also an inherent part of us. Our superorganism bodies carry close 
microbial relatives of Earth’s most isolated microbial inhabitants. 

Table 3 [91-100] illustrates examples of human extremophiles 
that form a part of our own microbiome. The Human Superorganism 
carries not only thousands of microbial species that operate in 
more moderate conditions, but also have microbial co-partners that 
are both ancient in ancestry and are extremophiles. In fact, it will 
be shown that many of our own extremophile microbes are closely 
related (e.g., same genus) to extremophiles across the far reaches of 
Planet Earth reaching toward the boundaries of space.

Table 3: Extremophiles as an Inherent Part of the Human Superorganism.

Name Or Category of 
Microorganism Location Special Property/Features Reference(S)

Methanomassiliicoccus 
luminyensis Human gut Methanomassiliicoccus luminyensis is novel as a methanogenic archaeon 

that does not require Na+ ions for energy conservation. [91]

Methanobrevibacter smithii Human gut There is a high prevalence of this methanogen archaea. It is found in most 
human guts. [92]

Methanobrevibacter oralis Breast milk
The presence of this archaea along with M. smithii in breast milk 

emphasizes the role of human-archaeal-bacterial mutualism through 
methanogenesis.

 [93]

Ruminococcus champanellensis 
sp. nov Human gut In the human gut, this bacterium degrades cellulose and cellobiose to 

produce acetate and succinate. [94]

Magnetospira sp. QH-2 and 
Desulfovibrio magnetics Human gut Magnetic orientation/association with hippocampus role in orientation 

and balance [95]

Tetragenococcus halophiles Human gut
Hyper salt loving, halophilic bacteria do occur in the human gut. This 

example produces lactic acid and is thought to be beneficial for human 
health.

[96]

Bacillus alcalophilus AV1934 Human feces An alkaliphile bacteria from the gut, this bacterium exhibits a novel 
potassium ion coupling apparently used in motility. [97]

Streptacidiphilus bronchialis Human bronchial 
lavage

This is a novel alkaliphile actinobacterium (not evolutionarily obvious) 
that was recently isolated from a bronchial lavage. [98]

Haloferax massiliense sp. nov. Human gut

This example was isolated from the defecation of a 22-year-old Amazonian 
female. A genome sequence and characterization have been reported. 

The genus contains species that are halophilic archaea, which beyond the 
human gut, inhabit hypersaline environments such as the Dead Sea and the 

Great Salt Lake.

[99,100]

A recent discovery about the human microbiome is that 
Earth’s most ancient microbial life form, the archaea, are a much 
more significant part of the microbiome than previously thought. 
New analysis tools have given us a better view of our archeal 
copartner. More than 1,100 distinct archeal genomes have been 
found in the human gut alone [101]. Kinkar and Saleh [102] found 
that the specific composition of archeal secretomes reflects the 
specific environment in which each archaeon is found as well as 

their requirements for nutrient uptake, maintenance of their cell 
walls, and/or their specific interactions with their environment. 
To demonstrate our own natural connections to Earth’s farthest 
reaches, Table 4 [103-112] illustrates examples of archaeal and 
bacterial extremophiles that are closely related to those inhabiting 
our own body (same genus). This table contains extremophile 
examples from Earth’s environment as well as from ancient 
humanoids.
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Table 4:  Examples of Extremophiles in Wildlife, Nature, and Ancient Civilizations Related to Those in Modern Humans*.

Genus/Category Locations/Survival in Nature Reference(s)

Methanomassiliicoccus
Coastal and deep-sea marine sediments, submarine mud volcano samples, anoxic 
lake waters, freshwater sediments, deep-sea brine samples, hot spring sediments, 

and peatland soils
[103]

Methanobrevibacter Neolithic dental calculus [104]

Magnetospira Salt Marsh at Woods Hole MA [105]

Tetragenococcus (previously called 
Pediococcus) Lupine seed fermentation [106]

Streptacidiphilus North China soil [107]

Haloferax Dead Sea [108]

Bacillus Hyperthermal vents; International Space Station conditions, and even simulated 
Martian surface conditions [109,110]

Desulfovibrio Sri Lanka geothermal springs [111]

Ruminococcus El Chichón volcano in Mexico [112]

Our Intimate Connection to Life on This Planet Should 
Never be Doubted nor Dismissed

Attitudes Toward Microbes and Exposure to Natural 
Environments Affects Our Physiology and Health Status

We are healthier when we connect our microbes and physiology 
to those microbes in the environment. Governmental decrees 
designed to isolate healthy humans from each other and from nature 
only contribute to microbiome and physiological degradation 
[5,56]. Additionally, Robinson et al. [113] posited that germaphobia 
has contributed to the prevalence of immune-driven disorders 
and mental health conditions and that our weaker connection to 
nature has further fostered immune related chronic disease. These 
researchers surveyed 1,184 individuals (the majority in the UK) 
about their visits to nature and attitudes toward microbes. They 
found a direct positive relationship between a positive attitude 
and knowledge of microbes and the frequency and duration of 
visits to natural environments. They also found that a viral-centric 
focus of microbes and lack of knowledge about microbial diversity, 
such as occurred with the Covid-19 scare, was more likely to be 
associated with an overall negative view of microbes and increased 
germaphobia [113].

There are numerous examples where exposure to microbes in 
natural environments aid our metabolism, physiology, and well-
being. For example, Mycobacterium vaccae is a soil bacterium 
that reduces stress/anxiety upon human exposure [114,115]. Not 
surprisingly, part of this natural soil bacterium that is beneficial to 
humans is being examined for potential patented drug development 
[116]. An entire research initiative within the developmental 
immunology area known as the “hygiene hypothesis” argued 
that early life exposure to farm animal environments (without 
pesticides) provided protection against later life allergic diseases. 

A significant difference was found between rural farm living and 
nearby urban areas in childhood immune status and the prevalence 
of allergic diseases. We now know that status of the microbiome-
host immune co-maturation is the basis for the “beneficial barnyard 
effect.” 

Findlay et al. [117] pointed out that the Covid-19 pandemic had 
the potential to harm the human microbiome and general health 
precisely because the mandates encouraged people to live in as 
sterile an environment as possible. The researchers warned that 
implementation of physical separation, extensive hygiene, travel 
barriers, and other measures that influence overall microbial loss 
could have long term adverse health consequences. Removing 
ourselves from a microbe-rich natural environment is precisely 
the opposite of what humans should be doing for improved health. 
Recent information suggests that microbes can play a very useful 
role in integrative pain management [118]. If the Covid-19 public 
policy measures were yet another major step in the long march 
of human microbiome degradation and immune dysfunction 
promotion, then what could come next? What could take us even 
further from our whole human status as a superorganism that 
houses trillions of Earth’s microbes?

Enter Transhumanism and The Alure of The 
Human Machine
The Siren’s Song of Transhumanism and the “Smart” 
Body

When the human body and microbiome are sufficiently 
degraded, and we are taught to devalue our inherent capacities, 
the historic body-as-a-temple concept evaporates. In a cultural 
environment where we routinely disparage ourselves, we can be 
more easily persuaded to cyborg ourselves just to become worthy 
of some future existence [119]. Rather than expanding through the 
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internet of microbes and superorgansims in the envisioned “human 
machine” world, we are encouraged to import new hardware 
connected to anything and everything.

A key element for transhumanistic modification of the human 
body was the recent public policy of mandated gene therapy. It fits 
the narrative that the human body is somehow a flawed design and 
incapable of thriving or possibly even living on Planet Earth. But 
the message that humans are the only selfish species and a blight 
upon Earth is predicated upon a biological lie: that humans are only 
one species. The single species idea for humans is important for 
the 21st century proposition that humans are defective beings. That 
our only hope to continue to exist on Earth is for us to increasingly 
become non-human, machine-like, transhuman or even post-
humans. That by becoming robotic and less “human,” we will 
become a higher, more valuable lifeform. The ever-present labeling 
of humans as inherently defective is the lure that entraps the 
human superorganism into accepting the life of a programmable 
and readily hackable machine, the ultimate transhuman.

In many ways this is a Faustian deal based on biological lies. 
Early waves of medical devices/machine implants important for 
addressing human diseases have illustrated the take-home message 
that the patient does not have security over the body’s machines. 
Best [120] described the situation where life/death decisions 
can be at the mercy of extortion from medical device hackers. 
But this is just the tip of the body ownership issue. Imagine next 
level chipping/transplanted devices where optional machinery 
is installed simply to create the “Smart” body. The hackable 
transhuman enters into what has been characterized as a new form 
of slavery, digital slavery [121]. The new slavery is wrapped up 
in a glitzy package that actually draws us away from our inherent 
nature as multi-species, free-willed beings made distinctly of the 
Earth’s predominant life forms and well-suited for the Earth if left 
in our natural state. The answers can be found inside of us, not in 
the latest Tech start-up.

Conclusions
More than fifty years of microbiome-disconnected public 

policies have increasingly degraded human and environmental 
microbiomes around the globe and compromised us as human 
superorganisms. Rather than simply reversing what has been 
a prolonged assault on humans, a suggested solution to our 
increasingly sick, prescription-drug-overloaded bodies is to take 
just one more step: to become increasingly nonhuman, to become 
a machine. The heavy hand of Covid-19 policies from 2020 and 
beyond should be enough to demonstrate that a fully hackable 
“human” machine is nothing more than a 21st century maximally 
shackled slave. If we are ever to realize our full potential as multi-

species beings and truly inhabit the Earth rather than separating 
ourselves from it, we must identify and reverse the public practices 
that damage our microbes and our bodies. We can still become 
that glorious, microbial vessel, the naturally connected human 
superorganism.
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