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Opinion
Rett syndrome (RTT) was first recognized by Andreas Rett 

nearly sixty years ago [1] and came to international attention 
following the landmark publication of Hagberg et al. in 1983 [2].  
Subsequent studies sought to identify the molecular underpinnings 
of this rare neurodevelopmental disorder as a genetic etiology 
seemed to be the most likely mechanism regarding its causation.  
In 1999, Amir et al. established that RTT is caused by variants in 
the methyl-CpG-binding protein 2 (MECP2) gene located a Xq28 [3].  
At present, more than 96% of individuals fulfilling the diagnostic 
criteria for RTT have a variant in this gene [4].  As an X-linked 
dominant disorder, its occurrence solely in females was expected 
and the presence of MECP2 variants in males was initially regarded 
as lethal.  Subsequently, numerous reports emerged in the decade 
after the gene discovery describing males with MECP2 variants and 
clinical features ranging from developmental delay to significant 
neonatal encephalopathy [5-19].  Yet, the notion that pre-term 
or early neonatal male lethality is likely has remained even to 
the present day [20], plus two reports from rettsyndromenews.
com/2021/12/15 and rettsyndromenews.com/2022/05/25.  
Adding to the confusion, the presence of classic RTT in males with 
MECP2 variants and X-chromosome mosaicism is well-documented, 
either due to somatic mosaicism or in association with Klinefelter 
syndrome, a 47XXY chromosomal disorder.  This has been 
documented since MECP2 was first associated with RTT [21-23].   

 
In both instances, males had two populations of X-chromosomes 
just as in females, allowing them to fulfill the established criteria 
for classic RTT [4]. 

Recently, data from the US Natural History Study (NHS) of 
RTT and RTT-related disorders were examined yielding 30 males 
with MECP2 variants [24].  Among these males, a wide phenotypic 
spectrum occurred ranging from severe neonatal encephalopathy 
with significant respiratory instability to mild to moderate cognitive 
impairment.  Two males had somatic mosaicism and were deemed 
to meet clinical criteria for classic RTT.  Sixteen males had variants 
seen in females with RTT, nine males had likely pathogenic variants 
not previously seen in females with RTT, and three males had 
variants of uncertain pathogenesis.  While fourteen of the sixteen 
males sharing variants seen in females with RTT did have a period 
of regression and could be considered to meet the first criteria 
for atypical RTT from that perspective, their clinical presentation 
and overall course was more severe and their RTT features less 
impressive than that observed in females with atypical RTT.  As 
a result, it was felt that these males should be characterized or 
designated as a new diagnostic entity, male RTT encephalopathy, 
to distinguish them from females with atypical RTT. 

To indicate the breadth of neurodevelopmental delay, two of 
the males with variants not seen in females with RTT, including 
one with the A140V variant, had relatively mild cognitive 
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impairment.  The A140V variant, noted in the references above as 
well in subsequent publications, was initially described as causing 
developmental delay only in males.  More recently, descriptions of 
neurologic or psychiatric manifestations have been seen in females 
with this variant as well [9,13,25,26].

The predominance of RTT in females is due principally to the 
primary occurrence of variants in MECP2 arising as de novo events 
in rapidly dividing germinal cells, namely, in paternal sperm [27-
29].  As such, these X chromosomes from paternal germinal cells 
could only result in female offspring, hence, resulting in the female 
preponderance of individuals with these variants.  In contrast, 
males with MECP2 variants arise from female carriers who are 
completely normal phenotypically or have mild developmental 
delays as previously described [5,19].  Males may also result from 
de novo occurrences in the ovum.  Indeed, the recent US Natural 
History data report [24] revealed virtually equal numbers of 
vertical transmission and de novo events.  Twelve of the twenty-
four mothers tested demonstrated vertical transmission from 
the mothers to their sons; one was presumed to result by this 
mechanism as his sister also had the same variant.  The remaining 
eleven were shown to be de novo events.

Following the US NHS report, at least an additional sixty males 
with MECP2 variants were identified through the International 
Rett Syndrome Foundation.  Many of these males were from the 
US, but not seen in the NHS due to their severe encephalopathy 
which prevented them from being seen in one of the US NHS 
sites.  Subsequently, a more complete list, including males from 
international sites, has been developed.  This includes as many as 
thirty males known through the group or from published reports 
with somatic mosaicism, one with Klinefelter syndrome, twelve 
with severe encephalopathy, and as many as thirty with male 
RTT encephalopathy.  Currently, efforts are in progress to obtain 
comprehensive clinical information and genetic testing results 
through virtual assessments from as many of these males as 
possible.  Genetic testing will be accomplished for those who have 
been evaluated previously but lack formal molecular testing.

One of the long-term concerns raised by the parents or 
caregivers of these affected males is that access to emerging 
therapies currently being evaluated in females with RTT as well 
as future therapies such as the proposed gene therapies may be 
hampered or even blocked by their failure to meet the established 
clinical criteria for RTT.  This reflects an inherent bias that needs 
to be eliminated.  Indeed, one of the concerns regarding gene 
therapy in females with RTT is the potential over-expression of 
the normal gene, resulting in the same situation already known 
to exist, predominantly in males, the MECP2 Duplication Disorder.  

This disorder was predicted shortly after the identification of the 
genetic basis for RTT [30].  Its occurrence was established shortly 
thereafter through a number of different investigations [31-
37].  This disorder also has very significant neurodevelopmental 
features.  Therefore, gene replacement in the female with RTT must 
be modulated to as not to over-express the gene in the population 
of cells already expressing the normal copy of MECP2.  As such, 
gene replacement treatment in males in which all cells express the 
variant gene would not have this limitation.

Conclusion
MECP2 variants in males, while being significantly less 

common than RTT in females, is a not-insignificant challenge for 
parents or other caregivers.  It represents striking differences from 
RTT allowing it to escape early diagnosis.  Nonetheless, its early 
recognition is essential to confirm the proper treatment strategy.  
The occurrence of male MECP2 variants is not lethal and deserves 
the same level of care provided to all with neurodevelopmental 
disorders.
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