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Introduction
Human upper limb motion monitoring is important, especially 

in the area of assessing upper limb impairment for patients who 
are undergoing neurological rehabilitation. Traditionally, the 
upper limb motion assessment methods in neurorehabilitation 
are subjective and rudimentary, mainly used in clinical settings. 
For example, Modified Ashworth Scale [1] has been widely used 
for upper limb spasticity measurement during the passive range 
of motion. For the active range of motion, Motor Assessment 
Scale [2] has been used to assess motor function in patients with 
stroke. Fugl-Meyer [3] assessment is another performance-based 
impairment index for assessing motor function.

With the recent development in sensing technologies, a range 
of different sensing systems have been used to provide objective 
measurement of upper limb motion, including camera-based 
systems [4], acoustic sensing systems [5], radio and microwave 
sensing systems [6], magnetic sensing systems [7] and inertial 
sensor-based systems [8-12]. More recently, the inertial sensing 
system has been widely used in upper limb motion monitoring.  

 
Also, lower cost inertial sensors are available in gaming controllers 
such as Nintendo Wii and Sony PlayStation Move [13,14]. These 
new sensing systems make it possible to assess upper limb motion 
remotely in a non-clinical setting. More importantly, it can provide 
additional insights to doctors and clinicians for monitoring the 
upper limb function response to a special rehabilitation regime 
[15,16]. 

Different data analysis methods and modelling techniques 
are used in human upper limb motion monitoring. Orientation 
and position are the primary parameters of interest for doctors 
and clinicians. For position tracking, kinematic modelling [17-19] 
has been proven to be an accurate method when multiple inertial 
sensors have been used. The Dead Reckoning (DR) algorithm has 
been used for position estimation of a single sensor monitoring 
system. Range of motion can be obtained using the 3D orientation 
output from the inertial sensors or calculated based on the 3D 
accelerometer, gyroscope and magnetometer outputs from the 
inertial sensors [17]. Moreover, time-frequency domain analysis 
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[20] has been used to provide objective and additional information 
on upper limb movement. 

Material and Methods
The primary goal of this work is to design, develop and evaluate 

a non-invasive multi-parameter measurement system using inertial 
sensors for assessing upper limb movement in patients undergoing 
Neurorehabilitation. This measurement system is expected to 
obtain more objective and repeatable measurements from the 
measurement subjects. As well as providing more objective data, 
it was expected that novel information would also be obtained 
concerning the trajectory and timing of segment movements that 
is not available with current assessment techniques. A system 

is developed using Xsens MTx. Two algorithms are developed to 
provide 3D data on limb motion. The first used Kinematic modelling, 
which requires the use of at least two or more sensors and can track 
the motion of multiple limb segments. The second applied the DR 
algorithm and enabled the tracking of a single limb segment using 
only one sensor.

Range of motion and position are the two main parameters 
for upper limb motion monitoring. As shown in (Figure 1), the 
measurement of range of motion includes shoulder abduction & 
adduction, shoulder internal & external rotation, shoulder flexion 
& extension, wrist flection & extension, ulnar & radius deviation, 
elbow flexion & extension, forearm pronation & supination.
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Figure 1:  Range of motion for the human upper limb. 

The techniques were used to analyse the position tracking, 
orientation tracking, frequency analysis, and acceleration signals 
data. Position tracking using the kinematic modelling and DR 
algorithm has been evaluated on healthy volunteers. Range of 
motion tests on different volunteers have been compared between 

different healthy volunteers and also a dynamic plot of the range 
of motion test is able to show the dynamic change during a specific 
range of motion test. The experimental results are presented in the 
Results and Discussion section. 

Results and Discussion

Figure 2:  Healthy volunteer range of motion test. 
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For the range of motion test, we use only one inertial sensor 
and attach the sensor to the upper arm segment. The expected 
range of shoulder abduction is 180 degrees. However, some claim 
that the normal range of shoulder abduction motion is between 160 
degrees and 180 degrees. Some claim normative values for shoulder 
abduction are in the range of 150 degrees. Additionally, movement 
of the subjects’ clothes and hence of the sensor relative to the limb 

may affect the range of motion so there may be additional variation 
for the individual as well as from individual to individual, as shown 
in (Figure 2). Compared with the goniometer which has been 
widely used in the clinic for measurement of upper limb range of 
motion, the proposed system is able to provide a dynamic change of 
the range of motion as shown in (Figure 3).

Figure 3:  Orientation tracking of a healthy volunteer for a shoulder abduction range of motion test. 

Position tracking especially trajectory monitoring is important 
for doctors and clinicians to obtain additional important information 
from the test. The 3D position of different upper limb segments can 

be predicted by using the kinematic model. The position trajectory 
for a healthy volunteer of a Nine-Hole Peg Test (NHPT) [21] is 
shown in (Figure 4).

Figure 4:  NHPT position trajectory of healthy volunteer. 

Conclusion
In this paper, a wearable system for measuring upper limb 

motion is proposed. The system has been used to objectively 
measure the position and range of motion for upper limb segments. 
Experiments have been done for a range of motion tests for different 

healthy volunteers and an NHPT for one healthy volunteer. The 
results show that the system is able to capture insightful information 
from the dynamic range of motion plot and trajectory of a healthy 
volunteer. Therefore the system is able to provide clinicians and 
researchers with a tool for research into the efficacy of current 
rehabilitation and new treatment regimes. This system could then 
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be used to assess the patients’ upper limb motion performance for 
regular use in a general clinical environment providing additional 
information which is not available when using current assessment 
techniques.
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