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Introduction
The mammalian system is composed of different types of 

systems and networks, and one of the communicating systems is 
the nervous system. The nervous system along with the endocrine 
system is responsible for maintaining homeostasis in the human 
body [1]. The fundamental unit of the nervous system is neuron, or 
also called as ‘nerve cell’. Apart from neurons, the nervous system 
also bears neuroglial cells. The nerve cell carries electrical impulses, 
and consists of dendrite, axon and a cell body and communication 
between nerve cells occurs by structures called ‘synapse’ [2]. The 
nervous system is not only responsible for the cognitive functions in 
our body but also the movement, digestion, and other activities [3]. 
The nervous system in vertebrates is divided into two categories, 
central nervous system (CNS) and peripheral nervous system (PNS) 
[4].

Impairment of functioning of the nervous system and nerve cells 
leads to the generation of neurodegenerative disease. Functional 
impairment of neurons and behavioral abnormalities are evoked by 
neural cells [5]. Neural non-coding RNAs play a critical regulatory 

role in brain functions [6]. Neurodegenerative diseases occupy an 
important viewpoint in public health because of the complexity 
involved in prevalence, time, and cost in treatment. The prevalence 
is due to a reason of multiple factors, and one of these is due to the 
lifestyle of an individual. Effective treatment for neurodegenerative 
diseases is difficult, and this gives the importance to finding out 
new therapeutic interventions. Metabolic factors play prime in the 
development of many complex diseases, and the same cause lies in 
the development of neurodegenerative diseases [7,8]. Low nutrient 
and oxygen conditions leads to an environmental adaptation of 
the cells, primarily tumour cells by the process called as metabolic 
rewiring, whereas metabolic plasticity refers to the ability of the 
cells to adapt their metabolic status to specific needs during 
development, differentiation, or response to stimuli [9-11].

Again, metabolic reprogramming used in context to tumour cell 
metabolism refers to ability of tumour cells to alter their metabolism 
for growth and energy requirements [12]. The mechanism of 
metabolic plasticity meets gene regulation, which is observed 
in metabolic rewiring also [13]. Metabolic functions of nerve 
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cells alter neurodegeneration and ageing and other pathological 
conditions. This can also be an adjustment of the nerve cells to grow 
and sustain themselves under different pathological situations. 
Thus, here in this work, the survival of metabolically impaired 
state of nerve cells is referred to as ‘metabolic reprogramming’ of 
nerve cells. The situation can be altered or enhanced by different 
factors that can be intrinsic, or extrinsic like diet, exercise, etc. 
The concept of metabolic reprogramming emphasizes on the need 
for development of therapeutic strategies that can be based on 
drugs, food, lifestyle, exercise, and social interactions in cure for 
neurodegenerative diseases [14]. The present work within the 
limited scope is looking at the metabolic aspects in functioning 
and dysfunctioning of the nerve cells and suggest on the possible 
interventions that can be exercised as therapeutic interventions.

Neural Metabolism
Understanding metabolism of the neurons can unravel reasons 

behind nerve cell damages as in stroke, memory loss as well as in 
Parkinson’s and Alzheimer’s disease [15]. Brain neurons together 
with astrocytes possess a high energy demand [16].

Microglia is understood to be a reactive contributor in 
neurological disorders [5]. Growth of dendrite, a highly branched 
network system in human brain is a complex process and is 
controlled by a few signaling pathways. In this process, active 
Nedd4-1 prevents protein degradation by ubiquitylation, and 
dendrites can grow due to the functions played by Nedd4/Rap2/
TNIK [17].

In situations of injury to the brain, nerve cells cannot be 
replenished, as they cannot renew themselves. However, in events 
of stroke, treatment with stem cells shows a promising approach 
[18]. Furthermore, nerve growth factors, or neutrophins also help 
in the regeneration process [19].The transcription factor family, 
E2F playing role in cell cycle also plays important role in neuronal 
differentiation, and E2F4 is important for terminal differentiation 
of neuroblasts [20]. Communication between neurons demands 
high energy, and glucose supply can vary in the nerve cells. Excess 
concentration of glucose can lead to mitochondrial inactivation in 
the neurons [21]. The process can lead to abnormal neuronal firing 
and axonal shearing and consequently death of the neurons. This is 
seen in Alzhemier’s disease, as well as in Dementia, and ability of a 
person to understand and respond to any signal comes down [22]. 
Energy demand in the brain rises with large number of neurons 
and is essential to maintain functioning of the neurons. Bulk of 
the energy consumption occurs at synapses, which is balanced by 
the activity of Na+/K+ ATPase pump with regulation of other ions 
like Ca2+, Mg2+, HCO3-, Cl- and H+. Astrocytic end feet mediate 
supply of glucose to the brain cells. Astrocytes can store glucose as 
glycogen or convert glucose to lactate and supply lactate to neurons 
by Glucose transporters (GLUT 3) for conversion to pyruvate and 
entrance to the citric acid cycle. Additionally, glucose can directly 
enter neurons by GLUT 3 for generation of pyruvate by glycolysis 
or enter to pentose phosphate pathway (PPP) to generate NADPH 
and other molecules [23]. Intermediates from PPP act as nucleotide 

precursors, whereas intermediates from glycolysis can serve as 
precursors for many biosynthetic metabolic pathways [24]. Lactate 
shuttle in brain occurs by mono-carboxylate transporters, key 
molecules for interaction between glia and neurons mediated by 
carbonic anhydrases (CA), playing role in bicarbonate transport 
[23,25]. Glucose reaches brain astrocytes, oligodendrocytes via 
GLUT 3 and microglial cells via GLUT 5 [26]. Glycogen is unevenly 
distributed in the brain, and concentrations are highest in 
regions with the highest synaptic density [27,28]. During stress, 
or any activity requiring more energy, glycogen from astrocytes 
is immediately converted to lactate, and lactate provides neuro 
protective effect against hypoglycemia, or ischemia [25]. Synaptic 
activity also involves uptake of K+ ions by astrocytes released by 
neurons with energy derivation from the breakdown of glycogen 
reserves [29-32]. Neurons can increase their glycolytic ability in 
response to stimulation and the metabolic resupply of energy 
in neurons can be regulated by feedback signaling by adenosine 
diphosphate and feedforward signaling by calcium ions. The choice 
between glycolysis and oxidative phosphorylation has an important 
effect on health and disease. However, during brain stimulation 
there is transient uncoupling between glycolysis and oxidative 
phosphorylation [33]. Astrocytes can flourish under hypoxia 
and depend on glycolysis, whereas neurons depend on oxidative 
metabolism and can succumb to ischemia [34]. Axonal myelination 
and regeneration are supported by monocarboxylate transporters 
[35]. Apart from glucose and lactate, acetate also serves as energy 
source to nerve cells. ATP generation in the brain is triggered mainly 
by glucose metabolism, and glucose supply to the brain is controlled 
by neurovascular coupling, and cross blood brain barrier by GLUTs. 
Disturbances in glucose metabolism leads to many neurological 
diseases [36,37]. Disruption of monocarboxylate transporters can 
also lead to neurodegeneration. The peripheral nervous system 
depends on lactate as fuel source [38-42]. Astrocytes, however, use 
acetate which later enters the citric acid cycle [43-48].

Glucose is needed in resting physiology, whereas lactate and 
acetate are essential in times of increased neuronal activities, 
including situations of limited oxygen or glucose supply. However, 
neuronal stimulation has also been reported to lead to an increased 
glucose consumption [33,48]. The homeostatic tone of the nervous 
system is regulated by lactate [49]. Furthermore, peroxisomal 
β-deficiency leads to metabolic disorder with involvement of the 
central nervous system (CNS) [5]. 

Molecular motors apart from playing role in neural disease 
pathogenesis also play role in brain wiring and neuronal plasticity, 
as well as regulates CNS and PNS. The molecular motors KIF 3 and 
KIF17 function for anterograde transport, whereas cytoplasmic 
dynein 2 plays role in retrograde transport. The myosin family 
proteins functions in short range transport processes. The KIF3 
motor also acts as a tumour suppressor [50,51]. Alterations in the 
NAD+ level impair the metabolic signaling pathways and lead to 
different neurodegenerative disorders, ageing and tumourigenesis 
[52]. 
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Metabolic Interactions
Metabolic interactions between astrocytes and neurons 

directs brain activity. Disruption of this interaction can lead to the 
development of generation of neurological diseases. Astrocytes act 
as sites for L-serine synthesis and mitochondrial reactive oxygen 
species (ROS) production [24]. Synapse generated glutamate (Glu) 
and ammoniacal ions (NH4+) is uptaken by the glial cells, and 
releases glutamine to neurons [53,54]. The functioning of NMDA 
receptors regulates synaptic plasticity and memory due to D-Serine 
released from 3-phosphoglycerate (PG) in astrocytes [55,56]. On 
the other side, L-serine plays a critical role in neurotransmission 
[57,58]. Simultaneously, glycine synthesized from serine acts as 
inhibitory neurotransmitter via ionotrophic glycine receptors 
located primarily in brain stem and spinal cord. The L-serine to 
glycine conversion coupled to the folate cycle, catalyzed by serine 
hydroxymethyl transferase leads to the generation of N-5, N-10-
methylenetetrahydrofolate (5,10-meTHF) from tetrahydrofolate 
(THF). L-serine, important for neurotransmission, also provides 
carbons for the generation of GSH (γ-L-glutamyl-L-cysteinyl-
glycine), an antioxidant [59,60]. Astrocytes with the help of 
syncytia help in the intra-astrocytic transfer of glucose, water, Ca2+, 
K+, etc. Immature astrocytes are embedded within astrocytoma 
which lack neurons [35]. In contrast to neurons, astrocytes can 
preserve energy stores such as glycogen which later is converted to 
glucose or lactate [61-63]. Phosphatidylserine, present in neuronal 
membranes modulates synaptic receptors, proteins, and release of 
neurotransmitters by exocytosis with Ca2+ -dependent membrane 
fusion reactions. Impairment of phosphatidylserine functioning 
results in cognitive impairment and Alzheimer’s disease [64]. 

Neuron-astrocyte metabolic interaction functions to maintain 
cellular homeostasis of glutamate, the excitatory neurotransmitter 
of the brain. Glutamate also plays a role in networking glucose and 
amino acid metabolism between neurons and astrocytes. Glutamate 
metabolic shifts lead to the generation of neurodegenerative 
diseases, like Alzheimer’s disease, Huntington’s disease. Glutamate 
is recycled between neurons and astrocytes as glutamate and 
glutamine by glutamate-glutamine cycle [65]. Glutamate also 
serves as the key metabolite in malate-aspartate shuttle (MAS). The 
MAS activity transfers cytosolic reducing equivalents of NADH or 
NAD+ to the mitochondrial matrix, essential for sustained glycolytic 
activity [66,67]. Dysfunction of glutamate metabolism can lead to 
neurodegenerative diseases, like Alzheimer’s and Huntington 
disease. One of the features of Alzheimer’s disease is reduced levels 
of glutamate levels in the brain, as well as due to disturbed astrocyte 
glutamine support [68,69]. 

The blood-brain barrier (BBB), formed by capillary endothelial 
cells is essential to prevent entry of neurotoxins and pathogens to 
brain, and functionally interacts with its surrounding of astrocyte 
perivascular end feet, pericytes and basement membrane [70]. 
Disturbances in the functioning of BBB leads to loss of synaptic 
transmission, neuronal connectivity, and functioning [71]. The blood 
brain barrier is formed by capillary endothelial cells surrounded by 
basement membrane, pericytes and astrocyte perivascular end feet. 

Tight junctions between endothelial cells prevent entry of water-
soluble molecules, and nutrients can be transported by passive or 
active-mediated transporters. However, gases and small nonpolar 
lipids can enter by passive diffusion [70]. 

Energy Metabolism in Brain
Brain energy metabolism involves networking between 

energy demand and supply coupled with changes in local blood 
flow and glucose utilization, also referred to as neurovascular 
and neurometabolic coupling. Astrocytes play an important role 
in neurovascular coupling, and astrocyte-neuron interactions 
regulate cerebral blood flow [72]. Neurons depend on oxidative 
metabolism to meet their energy needs, whereas astrocytes (glial 
cells) are highly glycolytic. However, it is the astrocytes that play 
a critical role in neurotransmitter recycling and anaplerosis, and 
mobilization of astrocytic glycogen stores is critical for long-term 
memory formation in rats [73-76]. Interaction between astrocyte 
and neuron is important for defense against oxidative stress, 
and reduced form of glutathione peroxidase is essential for the 
detoxification of reactive oxygen species [77]. 

Metabolic Transitions
Metabolic reprogramming, or transitions occurring in neurons, 

like changes in oxidative stress and induction of transcriptional 
sensors of oxidative stress are important in regulating physiological 
neuronal function, and brain plasticity and cognitive function. 
Metabolic pathways are disrupted in neurodegenerative diseases 
and can be due to oxidative stress [78]. 

Astrocytes have more metabolic plasticity than neurons. Upon 
nitric oxide exposure, astrocytes elevate their glucose metabolism 
through glycolysis and thus limiting fall in ATP levels and apoptosis 
of astrocytes. In contrast, nitric oxide exposure makes neurons 
lose their ATP levels and apoptosis. If neurons grow in low ATP 
energy levels, neurons can be deformed leading to death of the cell 
[15]. Even though metabolic plasticity of astrocytes is beneficial 
for their beneficial for their homeostatic and neuroprotective 
functions in physiological conditions, it can turn out to be harmful 
in pathological conditions [79-81]. Energetic interactions between 
astrocytes and neurons can also lead to neuronal excitability [72]. 
Similarly, neuroenergetics or coupling between neuronal activity 
and energy metabolism plays a critical role in neuron-astrocyte 
metabolic interactions [82]. Thus, wherein impairment of astrocyte 
functions can lead to neurodegenerative diseases, restoration of 
astrocyte function can provide lights for therapeutic opportunities 
in neurodegenerative diseases [83]. 

In Alzheimer’s disease, induction of hypoxia leads to an 
elevation of HIF-1α target, β-site β-amyloid precursor protein 
cleavage enzyme 1 (BACE 1) that cleaves amyloid precursor protein 
(APP) to form Aβ. In neuronal mitochondria, oxidative metabolism 
is disrupted by accumulation of Aβ. This leads to reduction in TCA 
cycle entry, acetyl-CoA production, α-ketoglutarate dehydrogenase 
complex, and elevated reactive oxygen species formation and 
transglutaminase activity leading to increased α-synuclein 
aggregation with reduction in oxidative respiration [84-90]. 
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Changes in zinc and copper level are coupled to Alzheimer’s 
disease pathology, and co-localization of copper is seen in Aβ 
plaques Simultaneously, iron is also co-localized with Aβ-plaques 
and neurofibrillary tangles [91-97]. Increased iron levels have been 
reported to be linked with APOE-4 AD risk allele [98]. Ageing is 
one of the risk factors for developing Alzheimer’s and Parkinson’ 
s disease (PD). Genetic and environmental factors can also lead 
to PD and Huntington’s disease (HD). Parkinson’s disease affects 
patient motor function with formation of α-synuclein aggregates. 
Huntington’s disease is characterized by formation of expanded 
CAG repeats in the Huntingtin (HTT) gene leading to neuronal 
degeneration and cell death in the brain [78]. Development 
of Parkinson’s disease can result also due to the mutations in 
mitochondrial genes and exposure to the neurotoxin, MPP+ 
that inhibits ETC complex I and oxidative respiration leading to 
permanent Parkinsonism [99-101]. Retention of memory in brain 
for long term is due to the lactate presence [102]. However, the 
essential energy substrates during development are ketone bodies, 
3-β-hydroxybutyrate (3HB) and acetoacetate (AcAc) [103-105]. 
Ketone utilization during brain maturation and development is not 
only essential for energy metabolism, but also for amino acid and 
lipid metabolism as well as in postnatal period [106,107]. Ketone 
oxidation in the adult brain increases under conditions of limited 
glucose availability, wherein ketone bodies are produced in liver 
from fatty acid and ketogenic amino acid oxidation. In the brain, 
astrocytes can only generate ketone bodies and uptake of ketone 
bodies in brain occurs by mono carboxylate transporters [108]. 
Ketosis in the brain is regulated by blood concentration which is 
coupled with reduced glucose utilization [109-111]. 

Consequences of Metabolic Dysfunction
Spontaneous coordinated behavior and nerve cells involves 

role of gap junction protein, innexin 2 [112]. Ageing reduces gray 
matter in the brain by dendritic arborization and reduction in 
synapse numbers. Additionally, white matter density also reduces 
in the brain with ageing coupled with an increase in the number 
of white matter lesions and decline in ATP levels. This also leads 
to structural alterations in mitochondria as well as downregulated 
association of mitochondria with endoplasmic reticulum [113-116]. 
Ageing also leads to a gradual decline in energy utilization by the 
brain, reduced NAD and NAD+ levels and elevated levels of NADH 
[117,118]. With reduction in ability of the neurons to generate 
required amount of ATP, synapses initiate their degeneration and 
dysfunction [119]. Loss of blood-brain-barrier integrity results in 
parenchymal accumulation of blood-derived proteins and immune 
cells leading to the development of inflammation [120]. Thus, 
hypometabolism leads to cognitive dysfunction in ageing as well as 
the development of adaptive signaling pathways in brain [121]. The 
neuronal firing patterns leading to neuroanatomical changes result 
in coginitive deficits with age. Neurons also with age lose their 
tree branching pattern and turnover [70]. Endothelial transporter 
proteins are altered in amylotrophic lateral sclerosis (ALS) patients 
with degeneration of astrocyte endfeet and abnormal level of blood 
protein in the cerebrospinal fluid. There is also deposition of IgG 
and complents in spinal cord and motor cortex [122-126]. The ALS 

patients also exhibit glucose intolerance, insulin resistance and 
hyperlipidemia [127-129]. Impairment of mitochondrial functions 
in mitochondria results from the mutations in the genes encoding 
α-synuclein, Parkin (Park 2), PTEN induced putative kinase-1 
(PINK1), Leucine rich repeat kinase-2 (LRRK2), DJ-1 (Park 7) [130]. 

Sleep apnea
The healthcare issues in neurological patients can also lead to 

the development of obstructive sleep apnea [131]. Obstructive sleep 
apnea (OSA) is a complex disease related to the dysregulation of the 
molecular clock and other associated biological processes [132]. 
The hypothesis being put forth in OSA is that the monoaminergic 
neurons (noradrenergic and serontonergic) inhibit cholinergic 
neurons leading to suppression of REM sleep and upregulating 
NREM sleep. This is due to the decrease in firing frequency of 
monoaminergic neurons in NREM sleep, and increase in firing 
of cholinergic neurons in REM sleep. The process leads to the 
development of a recurring cycle [133]. Sleep apnea is associated 
with many other complications including Down’s syndrome [134]. 
Understanding molecular biology of sleep apnea can lead to the 
development of new treatments [135]. There are a few reports that 
have shown the molecular domains affected in OSA, adipokines, cell-
adhesion molecules and molecules responding to the endoplasmic 
reticulum stress [136]. 

Reprogramming
The cellular and molecular mechanisms of cognitive functions 

need to undergo more research. Though there are several 
reports on neuronal reprogramming, the mechanisms of cell fate 
conversions are not being well studied. Reports observe the co-
expression of Bcl-2 and anti-oxidative treatments to improve glial 
to neuron conversion after traumatic brain injury [137]. The neural 
transcription factor, Neuro D1 could also reprogram glial cells to 
functional neurons, as well as human cortical cells to functional 
neurons [138]. Furthermore, the transcription factor ATF3 induced 
after early peripheral nerve injury developed cellular plasticity 
in sensory neurons to transform into a regenerative state [139]. 
Additionally, animal models have shown that Muller glia in zebrafish 
can be reprogrammed to regenerate retinal neurons [140]. 

In Drosophila, gut derived cytokines metabolically 
reprogrammed glial cells [141]. Glia has also been evidenced 
to undergo metabolic reprogramming in amyotrophic lateral 
sclerosis (ALS) due to mitochondrial dysfunctions [142]. Synaptic 
plasticity is a critical mechanism at the neuronal level [143]. 
Research work evidences the role of astrocytic ApoE to reprogram 
lipid metabolism and regulate neuronal epigenetic conditions. 
Brain function with memory activity is modulated in the process. 
However, comparatively ApoE4 is able to reprogram neurons than 
ApoE3 [144]. 

Neural Regeneration
Nerve injuries can result in loss of body parts. Regeneration is 

a difficult process, and stem cell replacement therapy is one of the 
possible interventions. Studies also suggest the use of growth factors 
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in regeneration of the nerve cells [145]. Neurological dysfunctions 
and neurological disease are associated with alterations in 
neural stem cell (NSC) differentiation [146]. The molecules, p53 
and p73, play key role in brain development and regulation of 
CNS development, and transition of GABA from excitatory to 
inhibitory coupled with glutamate excitatory inputs plays critical 
role in neurogenesis [147-151]. The mTOR (mammalian target of 
rapamycin) signaling plays an important role in differentiation, 
neurite outgrowth and synaptic formation, whereas HDAC 
inhibitors act as neuroprotective in neurodegeneration [152-154]. 
In summary, extrinsic, and intrinsic factors regulate neurogenesis 
and impairment of neurogenesis contributes to development 
of neurodegeneration and cognitive impairment [155]. Of the 
important players in synaptic circuit, gap junction protein 
connexin-36 plays a critical role [156]. 

Furthermore, nerve growth factor, a target derived neutrophic 
factor essential for the survival, growth and functioning of the 
peripheral and central nervous system also plays role in chemotactic 
movement of rat peritoneal mast cells by influencing survival and 
differentiation of the mast cells. The mechanism involves drastic 
morphological change and distribution of F-actin fibres and use 
of mitogen-activated protein kinase and phosphatidylinositol 
3-kinase pathway [157]. Different types of cells of the central 
nervous system arise from the ability of neural stem cells to undergo 
symmetric divisions and proliferation, as well as differentiation by 
asymmetric divisions. The NSCs generate neural precursor cells 
that again give rise to functional neurons in embryonic neuron 
development and adult central nervous system. The process for 
generation of pluripotentiality in NSCs to create young neurons 
called as neurogenesis, involves development of neuroblasts which 
differentiate to new neurons that migrates to the existing neural 
networks due to regulation by intrinsic and extrinsic signals 
[158,159]. The extrinsic factors includes transcriptional regulators, 
Sonic Hedgehog (Shh), Notch, Wnt, Bone morphogenetic proteins 
(BMP), Oct4, Sox2 and Nanog, whereas the intrinsic factors includes 
epigenetic regulators [160]. Interaction between microRNAs 
(miRNA) and nuclear receptor TLX plays role in dedifferention 
process of NSCs. Crosstalk between let-7b and cyclin D1 through 
TLX initiates stages of development [161,162]. Additionally, 
neurogenesis is mediated by growth factors and neutrophic factors. 
The identified neutrophic factors playing role here are four, namely 
nerve growth factor (NGF), BDNF, neurotrophin 3(NT-3), and 
neurotrophin 4/5(NT-4/5), wherein neutrophins binds to tyrosine 
kinase receptors [163-166]. 

Neural transcription factors are involved in the development 
of neural stem cells right from the embryonic stage [167]. For 
development of brain, subgroup of the basic-helix-loop-helix 
(bHLH) transcription factor, a neural lineage bHLH transcription 
factor, Neurod family is essential for development of CNS. The 
participating members of the Neurod family are four, namely 
Neurod 1, Neurod 2, Neurod 4 and Neurod 6 [168]. 

The bHLH transcription factor, NeuroD1, critical to initiate 
neuronal development program can reprogram other cell types 
to neurons. NeuroD1 binds directly to the regulatory elements of 
neuronal genes that can be developmentally silenced by epigenetic 
mechanisms [169]. The LIM homeodomain transcription factor, 
ISL1 plays a key role in the development of sympathetic nervous 
development by controlling cell cycle gene expression. This 
is essential for glial differentiation repression and neuronal 
differentiation [170]. 

Neural morphogenesis is regulated by the cell-adhesion 
molecules and actin-associated proteins. The movement 
mechanism of nerve growth cones with actin fibers determines 
axonal pathfinding in embryogenesis [171]. 

Long distance signaling in neurons is mediated by calcium 
signaling and bidirectional transport of proteins, vesicles, and 
mRNAs along microtubules. This is also helped by the axonal lengths 
and characteristic feature of the neurons being polarized cells. The 
process mediates in communication about axon injury to the soma, 
so as to enable initiation of the repair mechanisms [172]. Glial cell 
derived neurotrophic factor has been observed not only to prolong 
survival and induce enteric neurogenesis, but also improve colon 
structure and function in Hirschsprung disease [173]. Reports also 
observe the use of exosomes for the treatment of peripheral nerve 
injury [174].

The fibroblast growth factor (FGF) signaling is responsible 
for the development of spinal cord [175]. Insulin Growth factor 
1 (IGF) signalling plays role in adult neurogenesis, as well as 
stimulating differentiation of adult hippocampal progenitor cells 
to oligodendrocytes by inhibiting BMP signaling [176]. Vascular 
endothelial growth factor (VEGF) functions in the regulation 
of growth and maturation of neurons during development 
[177,178]. The three growth factors, FGF, IGF and VEGF functions 
by associating with tyrosine kinases [146]. Microenvironmental 
resource competition regulates differentiation of oligodendrocytes 
[179]. Neurotransmitters, like glutamate playing critical role in 
neural communication also function in neurogenesis [180,181]. 
In contrast to the role of neurotransmitter glutamate, GABA 
acts as the main inhibitory neurotransmitter in the brain. GABA 
acts in dual role, either as depolarizer, or as hyperpolarizer but 
decides based on the intracellular chloride content that decides 
on the transmembrane gradient [182]. Dopamine is another 
neurotransmitter of catecholamine involved in ontogenesis and 
embryonic proliferation of the germinal zone in development 
[183]. Chemical factors and intercellular contacts also play a 
critical role in remodeling of the dorsal root ganglion (DRG) cells. 
Primary sensory neurons are enclosed in DRG, and DRG cells 
can differentiate to different neuronal subpopulations [184]. In 
summary, the process of differentiation can be modulated by 
kinetics of protein metabolism in ganglion cells pregangliotic nerve 
endings [185]. 
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Axonal Regeneration
Axonal degeneration results from damage to the CNS, and CNS 

inflammation induces axonal degeneration. Axon growth is inhibited 
by RhoA. However, stimulation of cyclic adenosine monophosphate 
(cAMP) by prostacyclin leads to axonal regeneration [186]. 
Regeneration of axons is signaled by several intrinsic and extrinsic 
factors [186,187]. The first step of axon regeneration is initiated 
by growth cone formation. Nonregenerative response leads to the 
formation of retraction bulbs. Long range anterograde transport 
helps in axon extension, but in situations of injury, transport gets 
inhibited and that leads to the regeneration failure [187]. 

Curative Approaches
Cognitive performance in animals along with neurogenesis 

and synaptic plasticity improves with dietary energy restriction 
or fasting and exercise [188]. Experiments in Drosophila 
melanogaster has shown that short-term fasting results in 
increased long-term memory, whereas protracted fasting prevents 
aversive and not pleasant memory formation leading to conclude 
upon that intermittent bioenergetic changes are good for brain 
works [189,190]. This phenomenon can be related to the increase 
in brain functions and neuro protection under metabolic shocks 
conferring resistance to dysfunction and degeneration [191-193]. 
Brain ageing is accelerated by sluggish lifestyle, reduced physical 
and social activity, excessive calories intake, etc., whereas good 
lifestyle habits with dietary energy restriction, macro- and micro-
nutrients in diet, intellectual and social stimulations, reduction 
of stress uplifts cognitive abilities in an individual [188]. At the 
cellular level, neuronal resilience is improved by upregulation of 
the transcription factors, cAMP response element-binding protein 
(CREB), nuclear factor κB (NF-κB), and nuclear factor erythroid-
derived 2 (NRF2) and genetic expression of proteins counteracting 
cellular stress at multiple subcellular sites, and by different 
mechanisms [194]. Antioxidant enzymes, antiapoptotic protein, 
chaperones, neutrophic factors, etc. are upregulated by physical 
activity and intermittent fasting [194,195]. Adaptive cellular stress 
response upregulates cytoprotective signaling pathways by secreted 
neutrophins [196]. Amylin the food intake satiation hormone, and 
controller of blood glucose levels, and with ability to form amyloid 
plaques is not only restricted the pancreatic islet cells, but also 
extends to the CNS, wherein it co-localizes with Aβ-plaques in AD 
patients. Amylin thus lies at the interface between metabolic and 
neurodegenerative disorders [197-200]. These suggest that intake 
of drugs and food promotes brain health development. 

Dietary Influence
Food components in terms of dietary intake can help in recovery 

from neurogenic diseases, or can act as predictive for neurogenic 
diseases. Of the extrinsic factors to regulate neurogenesis, dietary 
factor is one of the factors to regulate molecular events in energy 
metabolism and synaptic plasticity, as well as can complement 

the cation of exercise [201]. Diet modulates sympathetic nervous 
system (SNS) role, and intake of sucrose upregulated SNS activity 
in rat study [202]. Multiple sclerosis (MS) proceeds with the loss of 
oligodendrocytes and destruction of myelin sheath. Intake of some 
foods like more of fish, polyunsaturated fatty acids (PUFA), exercising 
calorie restriction can either decrease, or lead to the development 
of MS. Adolescent obesity or intake of insufficient vitamin D levels 
enhance possibility for MS development. Consumption of ketogenic 
diet can lead to modulate vulnerability to MS [203]. Development of 
MS may collocate itself with initiation of metabolic syndrome [204-
206]. The situation can aggravate loss of healthy gut microbiota 
and short chain fatty acid producing bacteria, and encouragement 
of pathogenic species, like Enterobacter spp [207-209]. Dietary 
carbohydrates regulate nervous system function. Vagus nerve, 
acting as the communication pathway between gut, live and brain 
senses peripheral glucose availability to the brain sites. Intake of 
carbohydrates also enhances tryptophan concentration in the 
brain [202]. Enteroendocrine cells can sense bacterial tryptophan 
catabolites to activate enteric and vagal neuronal pathways [210]. 
Furthermore, glucose-dependent insulinotropic polypeptide (GIP) 
regulates body weight and food intake by CNS-GIPR signaling [211]. 
In situations of nerve injuries, nutrients show neuroprotective 
properties, apart from recovery of injured nerve tissue [212]. 

Caffeine helps to improve memory power by increasing cAMP 
(cyclic Adenosine monophosphate) levels. Curcumin from turmeric 
crosses the blood-brain barrier, boosts serotonin, dopamine and 
neutrophic factor and activates NRF2. This helps in new brain cell 
growth and is beneficial in animal models of traumatic brain injury, 
stroke, AD and PD. However, turmeric constitutes only 3-6% of 
curcumin [213-216]. The peripheral nervous system, susceptible to 
injury, can be regenerated by following a tailored diet [217]. 

Magnesium, involved in different and many enzymatic reactions 
leads to regeneration of the peripheral nerves [218]. Plant derived 
compounds can help in regeneration of the peripheral nerves 
[219]. Axonal regrowth in the nerve cells can be affected by DHA, 
part of neuronal membrane phospholipid by elevating expression 
of Bcl-2, as well as by inhibiting caspase 3-downstream effects 
[220-222]. Vitamin D expresses regulatory effect on neutrophic 
factors involved in nerve regeneration [223-225]. Polyphenols and 
polyphenol-rich foods benefit the regeneration of peripheral nerves 
and give neuroprotective effects in neuro degenerative diseases 
[226,227]. Methylcobalamin (MeCbl), activated form of vitamin 
B12, improves nerve conduction, regenerates nerves from injuries 
and is used in treatment of Ad and rheumatoid arthritis [228]. 
Also, a high fat diet can lead to hypothalamic dysfunction [229]. 
There are many nutrients that are beneficial for neuroprotective 
effect and brain functioning [230]. Ageing populations need brain 
health supplements. Vitamins C, D and B12 offer neuroprotective 
support and B family vitamins prevent dementia and boosts 
neurotransmitter production [229]. A few of those that affect the 
neural health of a person have been listed in Table 1 [231-239].
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Table 1: Essential food ingredients for healthy neuro functioning. The Table highlights a few of the essential ingredients required in diet for 
neuroprotective functioning.

Authors Food Role Quantum Requirement

Johnson [231],

Mayoclinic [232],

TimesofIndia [233], 

Medical News Today [234], 

Webmd [235], 

Healthshots [236], 

Healthline [237],

Vegetables

Green leafy vegetables (kale,

collards, spinach, lettuce) beneficial 

to reduce dementia risk and 

cognitive decline. 

Supplies Vitamin B complex (acts as 

Neurotransmitters), C, E (acts as neuroprotectors

and Magnesium (calms nerves).

One serving a day

in groups or as

single item/by 

change

NIA [238],

SCL Health [239] Berries

Blueberries, Strawberries

For reduced cognitive 

decline

Two or more

servings/week

Nuts and

Eggs

A handful of nuts and an egg [supplies vitamin E for 
Neuroprotection, egg provides choline (not more than 

3500mg/day) essential to make acetylcholine)

Nuts: Five times/week

Egg: one/day

Legumes supplies protein, fiber, Vitamin B complex Supports brain 
health Four times/ week

Fish, walnuts

and almonds

supplies omega-3-fatty acids for brain

and nerve health
Once a week, or 100grams/day 

serving

Wine Lowers risk of dementia Light to moderate

Dark Chocolates contains flavanol and gives anti-inflammatoryand antioxidant 
properties One serving/Week

Broccoli

contains glucosinolates that reduces rate of breakdown of 
acetylcholine

provides Vitamin K and folate (not more than 1000 mg/day 
for adults) that protects from blood clot and stroke. Improves 

memory and concentration

one serving/day

Pumpkin (ripe) 
seeds

provides Magnesium, iron (essential for

neurotransmitter synthesis, neuron 
myelination,mitochondrial functioning and consumption not 

more than 45 mg/day for adults), copper and zinc.

[low Magnesium levels is linked to migraines,depression 
and epilepsy, copper (not more than 8000 mg/day for adult)

s, and zinc (essential for neural regeneration, axonal and 
synaptic transmission), can reduce chances of Alzheimer’s, 

Parkinson’s disease and depression]

one serving/day

Protein
essential for brain functioning and for production of 

neurotransmitters (sources: pulses, legumes,egg, meat, 
poultry, dairy products, fish)

0.8gram/kg body weight

Coffee
Caffeine and antioxidants [increase alertness by 

blocking adenosine; improves mood by upregulating 
neurotransmitter, dopamine; increases concentration]

3-4cups/day

The probable dosage as per the recommendations and 
traditional culinary knowledge has been put forth over in Table 1, 
but one needs to look for quantum availability of that dosage from 
food product(s) as per the first line of therapy. Though there is 
less scientific evidence, Bacopa monnieri is consumed to improve 

brain health [240]. In general, the beneficial nutrients for balanced 
neurotransmitter supply to the brain includes amino acids, glucose, 
vitamins C, E, D, B-complex, β-carotene, minerals, arachidonic acids, 
docosahexaenoic acid, eicosapentaenoic acid, gamma-linolenic 
acid, apart from antioxidants for neuroprotective functions [241]. 
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The presence of antioxidants in the diet protects against 
oxidative damage to nervous system cells. Biochemical data 
indicate that polyunsaturated fatty acids such as arachidonic acid 
(AA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) 
and gamma-linolenic acid (GLA) as structural components of the 
nervous system play a key role in its function. The nutrition of the 
entire body also influences the production of neurotransmitters in 
the brain.

Conclusion
Therapeutic approaches have been adopted in patients with 

nervous system impairment using electrical stimulation of the 
CNS. However, it is unclear about the cells or cellular elements 
that activated upon electrical stimulation of the CNS [242]. There 
are many reports detailing the signaling and transcription factors 
that play a critical role in neural progenitor differentiation to 
neurons and glia cells. Even, long term memory is fuelled by 
pentose phosphate pathway of glial glucose [243]. Therapeutic 
strategies for ALS can stem out from glial mitochondrial 
function and metabolic reprogramming [244]. Development and 
induction of stem cells can help in replacement of the specific 
cells affected by neurodegenerative disease and injuries [245]. 
Direct regeneration of the neurons is a difficult process, however 
research understandings from the effect of growth factors, or any 
other component from the diet, or food component including 
lifestyle may help in regeneration studies under in vivo and in 
vitro conditions. The knowledge can be useful in the treatment of 
brain tumours also. The most common brain tumours in adults are 
glioma, and neuroblastoma in children. Loss of miRNA-34a leads to 
the loss of p53 that directs formation of adrenergic fibers in head 
and neck cancer [246]. Reports have identified molecular targets 
for therapeutical recovery procedures in brain tumours [247]. 
Experimenters have also uncovered a new class of memory cells, 
‘grandmother neuron’ that is the crossroads of sensory perception 
and memory [248]. Exogenously administered growth factors also 
led to regeneration of peripheral nerves [249]. Reports also confirm 
the reversal of neurodegeneration at advanced stage by neuronal 
metabolic rewiring [250]. Furthermore, calmodulin kinases may 
also contribute to the pathology of neuropsychological disorders. 
Stress coupled with neuroinflammation leads to neurodegeneration. 
Herbal medicine in nerve regeneration is a therapeutic option in 
this situation, and Ginkgo biloba, an antioxidant can help in nerve 
regeneration. Higher dosage of Ginkgo biloba extract reported better 
results [251-254]. Lastly, neurons adjust fuel utilization under 
conditions of pathogenic reprogramming in amyotrophic lateral 
sclerosis (ALS) [255]. Metabolic reprogramming in astrocytes can 
distinguish region specific neuronal susceptibility [256].

The physical way of brain communication occurs via neurons. 
Mapping the total circuitry can help one to understand different 
functions, like cognitive functions. The question arises here, if food 
components, or any activities can lead to rewiring of the circuitry 
in adult brain? Can these components lead to neurogenesis? 
It is certain that regulatory pathways influence the process of 
neurogenesis. There is also dependence on mitochondrial activity, 

energy consumption and Gibb’s energy consumption [257,258]. 
Mitochondria also serves as the central regulator in the process of 
neurodifferentiation and for neural stem cell fate decisions [259]. 
Glial metabolites can lead to glial reprogramming to facilitate 
morphological and functional regeneration in the central nervous 
system after injury [260]. Neuroplasticity or brain plasticity shapes 
brain morphology and physiology, and neuroplasticity is regulated 
by intrinsic and extrinsic stimuli [261]. The hypothesis that 
can be put forth here is that can dietary components or physical 
and or social activities have a direct influence on the process of 
neurogenesis and neuroplasticity? Nevertheless, it is essential 
to understand the molecular effects of herbs, or any other food 
components to support the first line of therapy in treatments for 
nerve injury. The knowledge gained will also help to understand 
metabolic reprogramming in nerve cells. With the understanding 
of metabolic reprogramming mechanism in nerve cells, therapeutic 
possibilities using food, social interactions, exercise with the 
first line of therapy can highlight upon the curative options for 
neurodegenerative diseases. The axonal regeneration is regulated 
by intrinsic and extrinsic factors; however, the question remains 
whether any specific dietary components initiate or stimulate 
axonal regeneration. The hypothesis can also be experimented 
in cultured stem cell conditions to allow manipulation of NSCs 
for therapeutic uses. It is thus essential to understand molecular 
basis of the effect of diet on food cognition to manipulate diet for 
sustaining neuron health.
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