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Abstract

Multiplicity of data is very common in medical studies when experimental subjects are treated under different treatments. When 
there are multiple measurements on each subject and the number of subjects is limited, the multiple comparison among different 
treatments is facing with the problem of high dimension with small sample sizes, or even the total sample size across all treatments 
is less than the number of measurements. Traditional methods such as the multivariate analysis of variance for multiple mean 
comparison is going to lose power or becoming inapplicable when the total sample size is approaching to the data dimension. In 
this paper we propose to use Läuter’s F -type tests and Liang and Tang’s generalized F -tests for high- dimensional multiple mean 
comparison. Both of these two types of tests are always applicable regardless of the sample size being greater or smaller than the 
data dimension. The practical application of these two types of tests is illustrated by some real datasets consisting of gene expression 
data of multiplicity. The box plots of projected data on the principal component directions are recommended as a supplementary 
tool for a double check of validation of the tests.

Keywords: Analysis of variance; F -test; Gene expression data; Multiple mean comparison.

Introduction
Multiplicity of data, hypotheses, and data analysis is a 

common problem in biological and epidemiological studies [1]. It 
is also very common in many medical studies [2-5]. The classical 
ANOVA (analysis of variance) belongs to the area of multiple 
comparison. MANOVA (multivariate analysis of variance) can be 
considered as high-dimensional multiple mean comparison. It 
is a common practice to use ANOVA to test the significance of 
difference among different treatments on some experimental 
subjects. When there is only one observed variable from 
experimental subjects, ANOVA can be always carried out under 
the normal assumption on sample data with equal variances  

 
across experimental groups. When there are a large number 
of observed variables from each experimental subject, the 
traditional MANOVA requires the total number of experimental 
subjects must be greater than the number of variables, that is, 
n p>  (n stands for the total sample size, p for the dimension 
of sample data). This condition, however, may not be satisfied 
in many medical studies. For example, in order to test the effect 
of a gene under different doses of some medication, the same 
dose can be repeatedly measured from a subject and the effect 
can be measured from different expressions. Each expression 
can be considered as a variable. Modern gene expression 
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technology makes it possible to measure a large number of 
gene expression, but the number of experimental subjects are 
relatively limited to control experimental cost. This results in the 
situation of high-dimensional multiple mean comparison with 
a small sample size. The classical MANOVA method is no longer 
applicable for this kind of significance analysis on different 
treatments. Different methods have been proposed for multiple 
comparisons among treatment effects in the literature, see, for 
example, [6-9] among others. There are also many methods for 
analysis of gene expression data, see, for example, [10-13]. Most 
of these methods are more or less related to the methodology of 
multiple comparison.

In this paper, we will propose to use F -type tests for high-
dimensional multiple mean comparison with a small sample size. 
The methods were developed by Läuter [14], Läuter et al. [15] and 
Liang & Tang [16]. Section 2 gives an overview on the F -type 
tests. Section 3 demonstrates the application of the F -type tests 
using practical gene expression data. Some concluding remarks 
are given in the last section.

The F -Type Test for High-dimensional Normal 
Mean and Its Extension

Testing high-dimensional normal mean is to test the null 
hypothesis

                                  0 : H µ = 0                                     (1)

versus alternative hypothesis 1 : /H µ = 0  based on an i.i.d. 
(independently identically distributed) sample 1 , . . . , nx x  
from a multivariate normal distribution   ( ,, )N p µ ∑ , where ∑  is 
unknown and assumed to be positively definite (     0)∑ > . The 
classical Hotelling 2T test−  is equivalent to an exact F test−  
[17] and is based on the condition that the sample size n  must 
be greater than the dimension . .,( )p i e n p> so that the sample 
covariance matrix is nonsingular. Denote by

1 , ... : .( ,    )nX x x n p′= ×  
Let ( ) 1( , ),D p q q min p n× ≤ − be a random matrix uniquely 
determined by 'X X  and denote by

                    
1 1

,   1 1 ,    1 1 ,Z XD H Z Z G Z I Zn n n n n
n n

′ ′= = ′ = ′ −
   
   
               (2)

where 1n  stands for the 1n × vector of '1 s  and nI  for the n n×
identity matrix. Define statistic

        
1 1( ) 1 1 ( , )

n q n q
LF tr HG Z G Z F q n qn nq nq

− −− ′ −= = ′ −            (3)

under the null hypothesis (1), LF  in (3) has an exact F 
-distribution ( , )F q n q−  (Theorem 2 in [14]). Reject the null 
hypothesis (1) for a large value of LF .

The above conclusion (3) was generalized to multiple 
normal mean comparison and a new type of generalized   F test−  

was developed by Liang & Tang [16]. A multiple comparison of 
normal population means is to test the following hypothesis 
versus the alternative hypothesis H1: at least two means differ.

          0 1 2
  :      ... ,          (       2)

k
H kµ µ µ= = = ≥  (4)

This is exactly the problem of classical multivariate analysis 
of variance (MANOVA) when assuming normal populations with 
an identical covariance matrix. Let  :    1,  . . . ,  { }x i nij i= be an i.i.d. 
sample from a normal population ( , )   (    1,   .   .   .   , )

p j
N j kµ Σ =  and 

assume that the k  samples are independent with one another. 
We want to test hypothesis (4). It is well-known that hypothesis 
(4) is commonly tested by the classical Wilks-statistic [17].

Now we extend the   LF test−  (3) to testing hypothesis 
(4) and give a new F type−  test. Let be the total observation 
matrix, where 1

kn n jj= ∑ = . The extended   LF test−  and the new 
generalized

F test−  are based on the following lemma (refer to Theorem 
3 in Liang and Tang).

'
 

11 1 21 2 11 2
( ,  .  .  .  , , ,  .  .  .  , ,  .  .  .  , ,  .  .  .  , )  :  

n n k knk
X x x x x x x n p= ×

  
(5)

Lemma. Let the total observation matrix X  be defined by 
(5) and A  be a constant matrix defined by

1 , 1,..., ,
( 1)

( ) : ( 1) , , 1, (6)
( 1)

0, .

ij ij

j i
i i

iA a n n a j i
i i

otherwise

 = +
 −

= − × = = +
+



 

Define the random matrix and the eigenvalue-eigenvector 
problem

                        :     1) ,( Y AX n n= − ×                                 (7)

                                
1

 ,
1

Y Y D D
n

′ = Λ
−                                          

(8)

where 1 ,  . . . , ,  ,  1,  1( ) ( ) .qD d d p q q min n p D= × = − −  consists of 
q eigenvectors 1 ,  . . . { }, qd d  associated with q positive eigenvalues 
of the non-negative definite matrix ( )1.   ,  . . . ,  qY Y diag λ λ′ ∧ = ( )= λ λ1 qdiag ,.....,∧ consists of 
the eigenvalues 1 ... 0.qλ λ≥ ≥ >  Let

                         ,       1, ..., .i iu Yd i q= =                            (9)

Let

    
( ) ( )

2112  1  /  .  1,  . . .( )
12

)  ,(
n

F u n u u u i qi ii i ijjn

−
∑= − − =
=−

 
  

          (10)

Define the statistic

                        

{ }
1
max i

i q
GF LF

≤ ≤
=                                       (11)

for testing hypothesis (4). Under hypothesis (4), GF has an 
approximate cumulative distribution function (c.d.f.) given by

;1, 2( ) [ ( )] ,        0,qP GF x F x n x< ≈ − ≥             (12)
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where ;1,( )2F x n −  represents the c.d.f. of the F-distribution 
( )1, 2F n − .

The approximate p-value of the GF -test (11) is computed by

( )0 0[ ( )]1 ;1, 2 ,qP GF GF F GF n> ≈ − − (13)

where GF0 stands for an observed value of GF calculated from 
the observations : 1,  . . . ,  ;  1,  . . . ,  { }ij ix i n j k= = and 
n is the total sample size given by (5). A large value of GF implies 
rejection of hypothesis (4).

It is pointed out that when the observation matrix X  
and the random matrix D  in (2) are replaced by the random 
matrices Y  and D  in (8), Läuter’s [ 1 4 ]  result (3) is still true 
under the null hypothesis  (4). The details are referred to Liang 
and Tang [16].

Application of the F -Type Tests for Grouped 
Gene Expression Data

In this section we will apply the F test−  tests LF  in (3) and 
the GF  in (11) to several practical grouped gene expression 
datasets. A research project was carried out by Tianjin Medical 
University,  China [17-19]. Rats were collected for experiment 
by four different treatments (doses) to see the treatment effects 
from 46 genes with sample size ( )6 , 1, 2, 3, 4in rats i= =  for each 
treatment. In the experiment on 6 rats, the ratio of organ wet 
weight to body weight (organ coefficient) was observed. The 
purpose is to evaluate rats’ organ development during the treatment. 
Details on the experiment and medical analysis can be found 
in Gao et al. [19]. The rats were randomly put in four different 
groups. Each group was treated by four different doses of the 
same medication. The effects from the 46 genes were measured 
from each group and the gene expression data were obtained for 
each group. Cao et al. [20] carried out the significance test for 
each single gene using the same gene expression data and was 
able to identify the significant genes under the four different 

doses for each group. Now we want to test the overall significant 
difference for all 46 genes under the four different doses 
(treatments). That is, we want to test hypothesis (4) with 

 4, 46k p= = , and the total sample size 4 6 24 ( ) n n p= × = <
. The classical MANOVA is no longer applicable. We carry out 
the LF  in (3) and the GF  in (11) to get their p-values and 
simulate their empirical p-values by generating standard normal 
samples from ( )) 4(0, 6p pN I p =  because both   LF test− and 
the GF test−  are location-scale invariant under the null hypothesis 
(4). We select different q-values ( ( )1, 1)q min n p≤ − − :

1 2

3 4

( ) ( [( ( ) ) ])
( [

1 ,     1, 1 / 3 ,
1, 1 /( ( ) ) ]2 ,       1, ) 1) ( ( ,)

LF q LF q min n p
LF q min n p LF q min n p

= = − −
= − − = − −

 
(14)

where [·] stands for the integer part of a real number. The results 
are summarized in Table 1. The following observations can be 
summarized:

a. For the group “Male ARC data”, the   LF tests−  

2 3 4
, ,   LF LF and LF show that a significance difference exists 

among the four treatments under the significance level  10%α =  
(their p- values are smaller than 10%), while the GF test− and the 

1
LF test− fails to detect the difference among the four treatments 
(their p-values are greater than 10%);

b. For the group “Male MPN data”, the LF tests−  

1 2
    LF and LF show that a significance difference exists among 

the four treatments under the significance level α = 10%. 
All other tests fail to detect the difference among the four 
treatments;

c. For the group “Male AVPV data”, all tests show that there 
is no significant difference among the four treatments;

d. For the group “Male Neonatal data”, all tests show that 
there is no significant difference among the four treatments.

Table 1: p-values for multiple mean comparison among the four groups. (TPV= True p-value, EPV= Empirical p-value)

Male ARC data GF LF1 LF2 LF3 LF4

TPV 0.7867 0.4176 0.049 0.0884 0.0464

EPV 0.984 0.417 0.047 0.0995 0.055

Male MPN data GF LF1 LF2 LF3 LF4

TPV 0.2022 0.0102 0.0694 0.3112 0.3215

EPV 0.3815 0.008 0.0675 0.299 0.316

Male AVPV data GF LF1 LF2 LF3 LF4

TPV 0.668 0.7685 0.6522 0.3626 0.2146

EPV 0.93 0.783 0.6535 0.369 0.221

Male Neonatal data GF LF1 LF2 LF3 LF4

TPV 0.1733 0.4346 0.8186 0.6997 0.2811

EPV 0.322 0.431 0.8155 0.699 0.2895
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In order to identify the individual genes in each of the four 
groups in Table 1, Cao et al. [20] applied the PCA-test (principal 
component analysis test, Liang et al. [16]) to each single gene and 
found the following genes show significant difference (level α = 
10%) among the four treatments:

1) For the group “Male ARC data”, genes Esr1, Esr2, Ghrh, 
Mtnr1b, and Npy show a significant difference among the four 
treatments;

2) For the group “Male MPN data”, genes Ar, Avp, 
Bdnf, Grin2a, Hcrtr2, Cyp19a1, and Tacr3 show a significant 
difference among the four treatments;

3) For the group ‘Male AVPV data‘”, genes Crhr1, Crhr2, Gper, 
Grin2b, Hcrtr2, Lepr, and Mtnr1b show a significant difference 
among the four treatments;

4) For the group “Male Neonatal data”, genes Ar, Arntl, 
Crhr2, Drd1a, Esr2, Hcrtr2, Cyp19a1, Mtnr1a, Per2, Slc17a6, 
Tacr3, and Trh show a significant difference among the four 
treatments.

Now we carry out the multiple mean comparison tests as in 
Table 1 on the overall significance of the single significant genes 
combined together in each of the four groups. The results are 
summarized in Table 2, where EPV (empirical p-value) for each 
test is not given because it is close to TPV (true p-value) as 
shown in Table 1. It shows that all five tests ( )1 2 3 4, , , , GF LF LF LF LF  
successfully detect the significant group difference for 
individually significant genes in the two datasets “Male ARC 
data” and “Male MPN data” but fail to detect the significant 
group difference for individually significant genes in the two 
datasets “Male AVPV data” and “Male Neonatal data”. Further 
analysis is needed for these two datasets [21].

We also carry out the multiple mean comparison tests as 
in Table 1 on the overall significance of the single insignificant 
genes combined together in each of the four groups. The results 
are summarized in Table 3. It shows that all five tests give 
consistent results, which show that there is no significant group 
difference for the individually insignificant genes in all four 
datasets.

Table 2: p-values from testing the significant genes in the four groups.

Male ARC data GF LF1 LF2 LF3 LF4

TPV 0.0005 0.0001 0.0001 0.0005 0.0052

Male MPN data GF LF1 LF2 LF3 LF4

TPV 0.012 0.0027 0.0117 0.0309 0.0001

Male AVPV data GF LF1 LF2 LF3 LF4

TPV 0.9495 0.7057 0.9325 0.9757 0.9829

Male Neonatal data GF LF1 LF2 LF3 LF4

TPV 0.3823 0.4109 0.5224 0.7949 0.451

Table 3: p-values from testing the insignificant genes in the four groups.

Male ARC data GF LF1 LF2 LF3 LF4

TPV 0.5423 0.4592 0.6456 0.633 0.5026

Male MPN data GF LF1 LF2 LF3 LF4

TPV 0.5368 0.8651 0.2713 0.5574 0.6465

Male AVPV data GF LF1 LF2 LF3 LF4

TPV 0.5223 0.7685 0.6559 0.3718 0.1775

Male Neonatal data GF LF1 LF2 LF3 LF4

TPV 0.2618 0.4348 0.8687 0.7838 0.2777

The p-values in Table 2 imply some inconsistent conclusions 
about the significant difference among the genes in the four 
treatments. Some further analysis can be carried out. We 
project the data from different treatments to the PCA directions 
determined by (8). For each dataset in Table 2, we project 
the data onto the first four PCA directions and point out 
the variation contribution of each PCA direction to the total 
variation, which is computed by Contribution of each PCA 

direction to the total variation = 

                         1

,   1, . . . ,p
i i

s
s q

λ

λ=

=
Σ

                  (15)

where Λ ( )1 ,  . . . ,  qdiag λ λ=Ë  is defined in (8). The Box 
plots for each of the four datasets in Table 2 are given in 
Figures 1-4. The projected data on the major PCA direction 
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(with the largest contribution to the total variation) for each 
dataset shows that there exists substantial difference among 

the four treatments for the significant genes in each of the 
four datasets.

Figure 1: Box plots for the projected data for the significant genes in group Male-ARC. (T1-T4 stands for four different treatments).

Figure 2: Box plots for the projected data for the significant genes in group Male-MPN. (T1-T4 stands for four different treatments).
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Figure 3: Box plots for the projected data for the significant genes in group Male-AVPV. (T1–T4 stands for four different treatments).

Figure 4: Box plots for the projected data for the significant genes in group Male-Neonatal. (T1–T4 stands for four different treatments).
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Similar box plots for the insignificant genes in each of the 
four datasets in Table 3 are given in Figures 5-8. The projected 
data on the major directions (with larger contribution to the 
total variation) for each dataset shows that there is no significant 
difference among the four treatments for the insignificant genes 
in each of the four datasets. This is consistent with the numerical 

results (the p-values) in Table 3. The projected data on the major 
PCA directions (with larger contribution to the total variation) 
for each dataset shows that there is no substantial difference 
among the four treatments for the insignificant genes in each of 
the four datasets. This is consistent with the conclusions implied 
by the p-values in Table 3.

Figure 5: Box plots for the projected data for the insignificant genes in group Male-ARC. (T1–T4 stands for four different treatments).

Figure 6: Box plots for the projected data for the insignificant genes in group Male-MPN. (T1–T4 stands for four different treatments).
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Figure 7: Box plots for the projected data for the insignificant genes in group Male-AVPV. (T1–T4 stands for four different treatments).

Figure 8: Box plots for the projected data for the insignificant genes in group Male-Neonatal. (T1–T4 stands for four different treatments).

Concluding Remarks
The F -type tests are easy to be applied to practical problems 

related to high-dimensional multiple mean comparison because 
of their easy numerical computation and the simplicity of their 
null distributions. They are all applicable to the cases of both 
large and small sample sizes, or even applicable to the case 
that the total sample size is smaller than the data dimension 
by choosing an appropriate number of PCA directions for 
dimension reduction. The Läuter-type F -test (3) has an exact 

F -distribution under the null hypothesis (4) when there is no 
difference among the population means. But the choice for 
the number of PCA directions needs to be determined by data 
analysts in a somewhat uncertain way. The idea of variation 
contribution as illustrated in the real data analysis in Section 3 can 
be employed to determine the number of PCA directions q in the 
Läuter-type F -test (3). For example, if the first q PCA directions 
already contribute more than 80% or 90%, one can choose the 
first q PCA directions for constructing the Läuter-type F -test. 
Although the generalized F -test GF (11) does not have an accurate 
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null F -distribution, its good approximation by the null distribution 
(12) was empirically studied by Liang and Tang [16] and it 
turns out to perform quite well for fairly small sample sizes. The 
GF -test attempts to capture the best data information from one of 
the PCA directions to see any significant difference among the 
population means after dimension reduction to a single direction. 
The LF -test attempts to capture data information from several PCA 
directions simultaneously to see any significant difference among 
the population means after dimension reduction to multiple 
directions. The real-data application in Section 3 also shows 
that both the GF -test and the Läuter-type tests give consistent 
conclusions. This provides data analysts with some confidence in 
applying the proposed F -type tests to practical problems in the 
area of high-dimensional multiple mean comparison. Although 
there exist some possible weaknesses  in applying the F -type tests 
in the sense that they may not give consistent results with those 
from graphical presentation of the projected data, as shown in 
Tables 1-3 & Figures 1-8, the different available tests associated 
with some graphical presentation of the projected data on the 
PCA directions in this paper shed some additional light to the 
methodologies for high-dimensional multiple comparison in 
many areas of data analysis with multiplicity.
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