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Introduction
This paper is a revised version of two articles which were first 

published on arXiv and subsequently merged [1,2].

The historic Predator-Prey problem, also known as the Lot-
ka-Volterra (“LV”) system of two coupled first-order nonlinear 
differential equations has first been investigated in ecological and 
chemical systems [3,4]. This idealized model describes the compe-
tition of two isolated coexisting species: a ‘prey population’ evolves 
while feeding from an infinitely large resource supply, whereas 
‘predators’ interact by exclusively feeding on preys, either through 
direct predation or as parasites. This two-species model has further 
been generalized to interactions between multiple coexisting spe-
cies in biological mathematics [5], ecology [6], virus propagation 
[7], and also in molecular vibration-vibration energy transfers [8]. 
As a result of their competition, the respective populations exhibit 
undamped oscillations as a function of time with a period which de-
pends on the species interaction rates together with the system’s 
energy.

Normalized Equations and Single Coupling 
Parameter

The classical LV model is based on four time-independent, pos 
itive, and constant rates with two representing species self-inter 

action, i.e. natural exponential growth rate α and decay rate δ  per 
individual of the respective prey and predator populations, and two 
others characterizing inter-species interaction.

Without any loss of generality, the LV system of two coupled 
first order ordinary differential equations (ODE) can be simplified 
by simultaneously scaling the predator and prey populations togeth-
er with time through a dimensionless time t based on the factor 
1 / αδ . The system is shown to only depend on a single positive 
coupling parameter λ , ratio of the respective growth and decay 
rates of each species taken separately, defined as

α
λ

δ
=

 
(1)

Let  ( ) 0u t ≥  and ( ) 0v t ≥  be  the  respective  instantaneous 
populations of  preys and predators assumed to be continuous 
functions of time t : upon inserting λ  as defined in (1) into the stan-
dard LV two-equation system, a normalized form is obtained as a 
set of two coupled first-order autonomous nonlinear ODEs solely 
depending on this single coupling ratio λ , [1].

   )1(u u vλ
•

= −           for preys  (2a)

         
( )

1
 1v v u
λ

•
= −

        
for predators (2b)
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The “dot” in u


 and v


 indicates a derivative with respect to the time 
:t  in the sudden absence of  coupling between species, the prey 

population would grow at an exponential rate λ  while predators 
would similarly decay at an inverse rate 1 / λ−  from their respective 

positive initial values.

Remarkably, the normalized ODE system (2) is invariant in the 
transformation u v→  together with 1 / :λ λ→ −  this fundamental 
property, subsequently referred to as “ invariantλ − ”, is extensively 
used throughout to considerably simplify the LV problem analysis.

Numerous solutions of the non-linear system (2) using a variety 
of techniques have been proposed including trigonometric series 
[9], mathematical transformations [10], Taylor series expansions 
[11], perturbation techniques [12,13], numeric-analytic techniques 
[14] and Lambert W-functions [15,16]. Also, an exact solution has 
previously been derived in the special case when the prey growth 
rate and predator decay rate are identical in magnitude, but with 
opposite signs, i.e. α δ= − , a condition which precludes population 
oscillation. The basic system (2) is non-trivial and analytical closed 
form solutions are unknown.

Since the original publications [3,4], the system (2) has been 
known to possess a dynamical invariant or “constant of motion K” 
expressed here in invariantλ −  form

1
) (

1
u v ln u v Kλλλ

λ
+ − =  (3)

In the following sections, through a functional Hamiltonian 
transformation combined with a suitable linear change of variables, 
a novel invariantλ −  Hamiltonian based on new “hybrid-species” 
reduces the system (2) to a new set of two coupled first-order ODEs 
with one being linear. As a result, a new, exact analytical solution is 
derived for one hybrid-species in terms of a simple quadrature: 
we then proceed with an original method to uncouple the system 
and derive complete, closed-form quadrature solutions of the LV 
problem. In the case 1λ = , an exact analytical solution of the LV 
system for each individual prey and predator species ( )u t  and ( )v t  
is derived as a function of time. The population oscillation period 
is further expressed in terms of a unique energy  function and two 
fundamental properties of the period are established.

Solutions with Hybrid Predator-Prey Species
The logarithmic functional transformation originally intro-

duced by Kerner [17] reduces the normalized LV system (2) to a 
Hamiltonian form: the coupling between the respective species is 
modified through a change of variables y  and x ∈  according to

	
( ) ( )andy ln u x ln v= =     (4)

The LV system (2) for the respective “logarithmic” prey-like and 
predator-like species ( )y t  and ( )x t  becomes

    

( )1
( )1

1

xy e

yx e

λ

λ

= −

= −





        (5)

Similarly to Eq. (3) this invariantλ −  system (5) admits a pri-
mary conservation integral H expressed as the linear combination 
of two positive convex functions

 1
( ) ( ) (,   1  ) 1yxH x y e x e yλ

λ
= − − + − −  (6)

	

As already established [18,19],  ( ),H x y  is the Hamiltonian of 
the conservative LV system since Eqs. (5) satisfy Hamilton’s equa-
tions with x as the coordinate conjugate to the canonical momen-
tum y. Equation (6) expresses the conservative coupling between 
species ( )x t  and ( ) :y t  it is further rendered invariantλ −  by 
introducing a scaled Hamiltonian  ,( )h x y  with total constant posi-
tive energy simply labeled h , according to

	
( ) ( )1,   ,H x y h x yλ

λ
 = + 
 

 (7)

We introduce a invariantλ −  linear first-order ODE between 
the species ( )x t  and ( )y t  by further combining the system (5) with 
(6) and (7)

1yx y x hλ λ
λ λ

   − − + = +   
   

 

 
(8)

Equation (8) suggests introducing a invariantλ −  linear trans-
formation of the set ( ) ( ){  },x t y t  to a new set ( ) ( ){ },t tξ η  representing 
the symbiotic coupling between ”hybrid predator-prey species”

 
1

1

x yλ
λξ

λ
λ

+
=

+

                                                                            (9a)

 
            

1
x y

η

λ
λ

−
=

+
 

                                                                                (9b)

The original Hamiltonian (6) together with (7) and the linear 
transformation (9) then becomes

 1

,   1
1

( )
e e

h e

η
ληλλ

ξλη ξ ξ

λ
λ

−+
= − −

+

                                  
(10)

 

Here ,( )h η ξ  is a new Hamiltonian for the coordinate η  and its 
conjugate momentum ξ . Notice that for small amplitudes, ,( )h η ξ  
identically reduces to the Hamiltonian of a harmonic oscillator. 
Upon further introducing the following invariantλ −  G- function

 ( )

1

1
G n

e e
η

ληλλ
λ

λ
λ

λ

−+

+

= with 1( ) ( ) /G Gη ηλ λ= − invariantλ −  (11)
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the conservation relationship (10) between the conjugate functions 
η(t ( )n t  and ( )tξ is recast into a compact form which provides a 
natural separation of variables

	
( ) )  1 (G h e ξη ξλ

−= + +  (12)

In the following we define a useful compact auxiliary func-
tion  ( ) 1U ξ ≥          appearing throughout as

	
( ) ( )1U h e ξξ ξ −= + +  (13)

Even though still nonlinear, the fundamental conservation rela-
tionship (12) partially uncouples the ( )tξ  -function from the ( )n t  
-function, resulting in three essential G -function properties:

I.	 The system’s energy 0h ≥  is  explicitly associated with the 
function  ( )U ξ  only;

II.	 The   positive  function ( )G ηλ     is  a  generalized    hyperbolic  co-
sine  function that reaches its minimum 1Gλ =  at 0η =  for any 
value of λ  : hence its inverse function 1Gλ

−   exists, and, for any 

value of  λ , Eq. (12) admits two respective positive and neg-
ative roots ,( )η ξ λ±  functions of  ξ  only satisfying

1,  ( ) ( )) (G Uη ξ λ ξλ
± −=  (14)

III.	 Since the η-function is associated with the coupling ratio  λ  
only, invarianceλ −  of the G-function (11) implies that, for 
a given λ , any positive solution ,( )η ξ λ+  is directly derived 
from the negative solution associated with the ratio 1 / λ , and 
reciprocally

	
(,  1( , /) )η ξ λ η ξ λ± = − 

   (15)

From Eq. (13) the hybrid-species population ( )tξ  thus oscil-
lates between the λ −  independent respective negative and positive 
roots ( )hξ −  and ( )hξ + , solutions of the equation ( )   1U ξ = , solely de-
pendent on the system’s energy h as displayed in Table 1 for several 
increasing values of h 	

Table 1: Roots of 1 e hξ ξ− − =  as a function of the energy h  from Eq. (16).

h 0.3 0.5 1 2 3 5 7 10

( )hξ − -0.889 -1.198 -1.841 -2.948 -3.981 -5.998 -8 -11

( )hξ +

0.686 0.858 1.146 1.505 1.749 2.091 2.336 2.611

1   0e h with hξ ξ− − = ≥
 
(16) 

For any value of the energy h , in the ξ η−  plane Eq. (12) 
represents a closed- orbit loop consisting of two branches 

,( )η ξ λ+  and ,( ) η ξ λ−  around the fixed point ( )0, 0 . This map-
ping is bounded by the roots ( )hξ −  and ( )hξ +  on the horizontal 
 axis; since ( )U ξ  admits a maximum he  located at hξ = − , it is also 
bounded vertically by the two respective positive and negative 
roots solutions of the equation ( )( ) 1,   hh G eη λ λ

± −=− . An orbit is 
displayed on Figure 1 for an energy  2h =  and two inverse cou-
pling parameters 2λ =  and 1 / 2λ = . Per Eq. (15), the respective 
branches associated with the λ  and 1 / λ -mappings are readily ob-
served to be symmetric with respect to the  0η =  axis.

Except when 1λ = , algebraic  solutions of  Eq. (14) may  
generally not be obtained directly. However, for any value 

( ) ( ),[ ]h hξ ξ ξ− +∈  the two roots ,( ) η ξ λ±  of Eq. (14) may be 
obtained numerically through a standard ”Newton-Raphson” 
algorithm. Appendix 1 establishes that each root admits lower 
and upper bounds for any value of ( )U ξ , thereby ensuring algo-
rithm convergence.

Lastly, upon inserting the linear transformation (9) into the 
modified LV system (5), or equivalently using the standard Hamil-
ton equations with Eq. (10), a new semi-linear system of coupled 1st 
order ODEs is obtained

hη ξ= +


     (17a)

( )G eξξ ηλ
′= −



 (17b)
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Figure 1:  ξ η−  Mapping for  2λ =   and  1 / 2λ = , and energy   2h = .

The solution of the system (17), in which ( )G ηλ
′  is the derivative

( ) /G dG dη ηλ λ
′ = , represents the time-evolution of the hybrid-species 
( )n t  and ( )tξ , albeit due to the linear transformation (9), the first 

coupled equation (17a) becomes linear as expected. Remarkably, as 
a result of this hybrid-species transformation, the linearity consider-
ably simplifies the solution of the system (17). The exact solution 
of the LV problem is derived by integration of (17a) as a simple 
closed-form quadrature for ( ) :t ξ  upon using the initial conditions 

 00η =  and ( )0 hξ ξ ±=  when  0t = , the exact LV solution correspond-
ing to the respective negative and positive branches ( ),  η ξ λ−  and 

,( ) η ξ λ+  becomes

  
   

(18)

This quadrature is not divergent at   x h= − , since the differ-
ential dη  in Eq. (14) contains the factor ( ( ) )U h e ξξ ξ −′ = − +  in the 
numerator. Upon using the same initial conditions, the solution 
(18) is expressed in terms of the function ,( ) η ξ λ±

 itself through 
a standard integration by parts in which the singularity at  hξ = −
is further eliminated by adding and subtracting the expression 

( ),n h

h

λ

ξ

± −

+
 in the integral. The final, exact, closed-form, regular solu-

tion of the entire LV problem for any value of the coupling ratio λ  
and/or of the orbital energy h is explicitly expressed as a quadra-
ture over each of  the two branches ,( ) η ξ λ±  solutions of (14)

 
(19)

This exact solution is further analyzed in the following sec-
tion. Numerical solutions for ( )tξ  and ( )tη  are also obtained by 
integrating Eqs. (17) using a standard fourth-order Runge-Kutta 
(RK4) method   as    presented  in  Figure 2  for   values of  h and λ ex-
actly identical to those of Figure 1, together with the above initial 
conditions 0η  and 0ξ . The function ( )tξ  is observed to principal-
ly depend on two time constants: a quasi-exponential increase 
at a rate  of  order  λ  followed   by an exponential decrease at a rate 

1 / :λ−  from invarianceλ −  (15) the two functions ( )tξ  respectively 
corresponding to 2λ =  and its inverse 1 / 2λ =  are mirrors of each 
other; so are the functions ( )tη , but with the change  η η→ − .

For the general case 1λ ≠ , upon explicitly relating ( )G ηλ  to its 
derivative ( )G ηλ

′  and expressing the latter as an analytical function 
of ξ  only through (12), an ap- proximate yet accurate ODE for 

( )tξ  is proposed below.

Case 1λ = . The LV problem is solved exactly in the particular 
case 1λ = , [2]. The G-function (11) (omitting  the  index   for  simplic-
ity) reduces  to  the  hyperbolic cosine function and the energy con-
servation equation (12) becomes

	
( ) ( ) ( )1G cosh h e ξη η ξ −= = + +  (20)
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Figure 2: Solutions for ( )tξ   and  ( )tη  as a function of time t  with 2λ =   and energy  2 :h =  numerical integration of Eq. (17) by RK4.

The resulting –ξ η  closed-orbit mapping is symmetric with two 
branches ( )η ξ±  explicitly expressed in terms of the inverse hyper-
bolic cosine function

( ) ( )1 1cosh h e ξη ξ ξ −± −= ± + +        (21)

Equation (21) again establishes the symbiotic coupling between 
the hybrid species η  and ξ . Evidently, in this 1λ =  case, the explicit 
relationship between ( )G η  and its derivative ( )G η′  is

	
( ) ( 2 1/2 1)G Gη′ = ± −  (22)

Upon inserting (22) together with (20) into (17b) the nonlinear 
LV system (17) completely uncouples: it consists in the 1st order 
linear ODE (17a) together with a 1st order nonlinear autonomous 
ODE for the species ξ  population

hη ξ= +
  (23a)

1/222 1/2 21)  1( ( )) ) )(e U h eξ ξξ ξ ξ= ± − = ± + + −


 (23b) 

The linear equation (23a) is directly solved by inserting ( )η ξ  

from (21) into the solution (19). Together with ( )U ξ  defined 
in (13), the exact, closed-form analytic solution on the interval 
ξ ξ ξ− +≤ ≤  is thus expressed as a simple quadrature in terms of 
elementary functions

 
(24)

By applying l’Hôpital’s rule, it is readily verified that the inte-
grand in (24) is regular at hξ = − . Figure 3 presents the ( )t solutionξ −  
obtained by numerical RK4 integration of (24) for an energy  2h =  
with initial condition ( ) ( )0 hξ ξ−= . The growth and decay phases 
of the function ( )tξ  are observed to be symmetric relative to the 
half-period *t  when ( ) ( )t hξ ξ∗ += . The LV solution is finalized for 
the two branches ( )tη±  by inserting ( )tξ derived above into Eq. (21).

Alternatively, over the respective intervals ( )tξ ξ ξ− +≤ ≤  and 
( )tξ ξ ξ−+ ≥ ≥ corresponding to the growth and decay phases of 

( )tξ , an expression for ( )t ξ
 
is readily obtained by performing the 

integration with the respective positive root (growth phase) and 
negative root (decay phase) of the autonomous Eq.(23b), yielding 
the following quadrature solution which only depends on the en-
ergy h
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( )
( )

 
2 2 1 

dxt
xh x e

ξξ ξ= ∫ −
+ + −   

(25a)

 
( )

( )

* 
2 2 1 

dxt t
xh x e

ξξ ξ= + ∫ −
+ + −   

(25b)

Even though the ( )tξ  hybrid species population is not explicitly 

expressed as a function of time t, the function ( )t ξ  being monotonic 
and continuous on each respective integration interval, its inverse 
function 1 :t− →   defined by ( ) ( )1 t tξ ξ−= , exists and is unique, 
monotonic, and continuous on each interval. At the respective limits 

( )hξ −  and ( )hξ +  the integrand of (25) has a weak singularity of the 
square root type but is strictly continuous over the interval and the 
integral is convergent. It is readily verified that integrating (24) by 
parts identically results in solution (25).

Figure 3: Solutions for  ( )tξ  and ( )tη   as a function of time t obtained by numerical integration of the quadrature solution Eq. (23b) with  1λ =  and 
energy  2h =  .

Together with (21), the exact solution (25) for ( )tξ  over the re-
spective intervals ξ ξ ξ− +≤ ≤  and ξ ξ ξ+ −≥ ≥  constitutes the fi-
nal solution of the LV problem for the “hybrid species” in the special 

 1λ =  case considered here.

The solution (25) is similar in form to one derived by Evans and 
Findley (Eq. (17) in [10]); however, the above integral expression 
lends itself to simpler analytical or numerical integration. An exact 
expression for (25) is further proposed in Appendix 1 in terms of ex-
ponential integral functions.

Exact Solutions for the Prey and Predator Species Popu-
lations. In this 1λ =  case, exact solutions for the time evolution 
of the prey and predator populations  are  derived  by  inserting the 
respective hybrid-species populations ( )tξ  and ( )tη   obtained from 
Eqs. (25) and (21) into the original definitions (4) and (9). This re-
sults in two uncoupled solutions for the individual populations 
( )u t  and ( )v t  of the prey and predator species.

Over the growth and decay phases of the symmetric ( )tξ  func-
tion, these exact un- coupled analytical solutions for the respective 
prey and predator populations are expressed as follows

 )Interval 0 interval ,( )  . (.t t t i e tξ ξ ξ ξ− +≤ ≤ ∗ ≤ ≤

 growth phase

2 (t)2u(t) = h + 1 + (t) + (h + 1 + (t))  - e ξξ ξ  (26a) for preys

2 2 (t)v(t) = h + 1 + (t) - (h + 1 + (t))  - e ξξ ξ  (26b) for predators

with ( ) ( )1 t tξ ξ−=
 
derived from (25a) together with ( ) ( )0  hξ ξ −= .

( )Interval 2 intervalt t t tξ ξ ξ+ −∗ ≤ ≤ ∗ ≥ ≥

, i.e. ( )tξ  decay phase

2 2 (t)u(t) = h + 1 + (t) - (h + 1 + (t))  - e ξξ ξ  
(27a)

 
for preys

2 2 (t)v(t) = h + 1 + (t) + (h + 1 + (t))  - e ξξ ξ  (27b) for predators

with 1( ) ( )t tξ ξ−=  derived from (25b) together with ( ) ( )t hξ ξ∗ += .

Figure 4 displays the exact uncoupled analytical solutions for 
the time evolution of the preys ( )u t

 
and the predators ( )v t

 
when their 

respective growth and decay rates are equal in magnitude, and 
when the system’s energy is 2h = .
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Figure 4: Exact analytical solutions for ( )u t  and ( )v t  as a function of time t obtained from Eqs. (26) and (27) with energy  2h = .

It is observed that the prey population ( )u t
 
exhibits an initial 

growth at rate significantly slower than its own fast decay rate with 
the opposite for predators; also the peak population of the preys oc-
curs when the population is mature, i.e. when the predator popula-
tion is small ( ) 1v = , and vice-versa.

Case 1λ ≠ . In the general case when 1λ ≠  the relationship be-
tween ( )Gλ η  and its derivative 'G λ η  

is obtained by observing that

( )' ( ) ' ( ) ' ( )11
e eG einvariawith G ncG

η
ληλ

η η ηλ λ
λ λ

λ

λ

−−
= = − −

+
− (28)

Upon eliminating η  between Eqs. (11) and (28), an implicit 
non-linear 1st order ODE relating G  to its derivative jG  is derived 

(for clarity the index λ  is omitted in the remainder of this section)

( )
11 ' ' 1G G G G

λ
λλ

λ
 + − = 
   

(29)

Equation (29) is completely invariant in the change 
1/λ λ→− , or equivalently changing 1/λ λ→  together with

' 'G G→ − . As a result, similarly to Eq. (22), in the 'G G−  phase 
space, Eq. (29) represents the positive and negative branches of 
a “skewed” hyperbola with orthogonal asymptotes, respectively 

' /G G λ=  and 'G Gλ=− , and a vertex ' 0G =  located at ' 1G = . For 
any value of the coupling parameter λ , the function ( )'G η

 
reaches its 

extremes at the two roots of ( ) hG eη = . Also, as expected, in the case 
1λ =  Eq. (29) identically reduces to (22).

Being implicit, (29) can generally not be solved for 'G  as a func-
tion of G  by standard algebraic techniques. A practical yet accurate 
approximation for the function ( )'G G

 
predicated on Eq. (22), which 

uncouples the system, is proposed below.

For the positive branch ' 0G ≥ , for large G  the function 'G  is 
asymptotic to ' / :G G λ=  Eq. (29) is recast as

 

2

2 1

' 11
1 '1

G
G GG

G

λ
λ

λ

λ
+

= −
 + 
 

 

(30)

Furthermore, the factor in parenthesis in the denominator al-
ways satisfies the following inequality

2 '1 '1
G
GG e

G

λ
λ

λ
 + < 
 

 (31)

Upon approximating this factor by its exponential limit, Eq. 
(30) becomes

	

2 1

' ' 11
G
G Ge

G G

λ

λ
λ +

 − ≅ 
 

 (32)

	
Since the G-function is bounded by he , a Taylor expansion of the 

exponential factor to first order yields an explicit approximation for 
the two branches of '( )G G . Notice that the negative branch ' 0G ≤  
is directly obtained by invarianceλ −  applied to the equation repre-
senting the positive branch , 0G ≥ .
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( )
1/ 2

1' 1 2 1

GG G
G

λ λ

 
 ≅ −
 +        

(positive branch ' 0)G ≥  (33a)

( )
1/ 2

1' 1 21/ 1
G G G

G
λ

λ

 
 ≅ − −
 + 

 
(negative branch ' 0)G ≤  (33b)

Remarkably, the above approximate function ( )'G G
 
satisfies 

the following three basic properties identical to those of an exact 
numerical solution of Eq. (29):

1.	 At its vertex, when  1G = , the function ( )'G G
 
reaches ' 0G = ,

2.	 For 1G , as expected, the positive branch of the function ( )'G G
 
is 

asymptotic to /'G G λ=  whereas the negative branch is asymp-
totic to 'G Gλ=− ,

3.	 For  1λ = , ( )'G G
 
reduces to the exact predicate expression 

(22).

Thus, in the 'G G−  phase space, the explicit expressions (33) rep-
resent approximate positive and negative branches of the “skewed” 
hyperbola defined by Eq. (29) with the same orthogonal asymptotes. 
Upon comparing graphic representations of the explicit expressions 
(33) to the exact numerical solution of (29) for the implicit function 

)'(G G  it is found that the agreement is quite reasonable particu-
larly for the positive )'(G G -branch when 1λ ≥ , and conversely for 
the negative branch when 1λ ≤ . This is understandable in light of the 
above first two properties of (33). As 1λ →  the approximation (33) 
approaches the exact solution (22); for 1λ   the graph of (33) ex-
hibits two branches tightly bounded by their respective orthogonal 
asymptotes with the accuracy of this approximation increasing with 
increasing λ .

As  intended, approximation (33) effectively uncouples the sys-
tem (17) by explicitly removing the dependence on η  in the original 
ODE (17b): upon inserting the con- servation Eq. (12) into (33), Eq. 
(17b) is replaced by a pair of two invariantλ −  1st order nonlinear 
ODEs for the hybrid species population ( )tξ

( )
( )( )

1/ 22 1
1 1

2 1
1

h e

h

λξξξ
λ λξ

 + + +  = − −
 +

+ + 
 



 

 (positive -branch: 0)η η ≥  (34a)

   ( )
( )

( )
( )

1/ 2
21/ 1

1 1
2 11/

1

eh

h

λξ
ξ λ ξ

λ
ξ

 
 +
 

= + + − + 
  + + 

  
(negative -branch: 0)η η ≤  (34b)

Evidently, for  1λ =  the two branches of (23b) are recovered. 
Even though ( )tξ  is not explicitly expressed as a function of time 
t, the arbitrary 1λ ≠  problem has thus been reduced to a pair of 
simple quadratures for the function ( )tξ . As already stated, the 
function ( )tξ

 
oscillates between the λ-independent respective 

roots ( )hξ −

 
and ( )hξ +

 
solutions of Eq. (16). The process for solv-

ing Eq. (34) is identical to that of Eq. (23b): upon again choos-
ing the time origin t = 0 when ( )0 hξ ξ −= , a complete period is ob-
tained by integration over the corresponding negative  branchη −  
in (34b) until  ( )tξ

 
reaches ( )hξ + ,  followed by an integration over 

the positive branchη −  (34a) until ( )hξ −

 
is reached

( ) ( )

( )
( )( )

1/ 221/ 1
1 1

21 1/ 11

x
et dx

h
h x

λ
ξ

ξ
λ χ λξ

− + 
 = −∫  + +− ++ + 
 

 

(negative -branch)η      (35a)

( )
( )

( )( )

1/ 22 1

1
21 11

x
et dx

h x
h x

λ
ξ λξ

λξ

− + 
 = − −∫  + ++ ++ + 
   

(positive -branch )η

      

(35b)

The function ( )t ξ  
being monotonic and continuous on the re-

spective integration intervals ξ ξ ξ− +≤ ≤  and ξ ξ ξ+ −≥ ≥  its inverse 
function ( )tξ

 
exists and is unique, monotonic, and continuous on 

each interval. The LV problem is then completed for the function 
( )tη

 
by directly integrating the linear Eq. (17a) through standard nu-

merical techniques.

To   assess  the  accuracy of the uncoupled approximate solu-
tions (34), a comparison is made with the exact numerical solu-
tions of the original coupled LV system (17). Upon using the re-
spective values  2λ =  and  2h =  identical to those of Figure 2 
for the coupling ratio and system energy, Figure 5 presents the 
comparison between the functions ( )tξ

 
and ( )tη

 
respectively ob-

tained by numerically integrating (34) and (17) simultaneously 
through a standard 4th order RK4 method. From the figure it is 
observed that the ODEs (34) provide a reasonably accurate solu-
tion for both functions ( )tξ

 
and ( )tη

 
over an entire period, yet, 

when  1λ > , with an underestimation of the time taken to reach 
( )hξ +

 
compensated by an overestimation of the time to reach 

( )hξ − . As expected, the accuracy of the solutions obtained with 
approximations (34) increases with increasing  λ .

From Figure 5, regardless of the value of λ , the hybrid species 
population ( )tξ

 
oscillates with exponential-like growth and decay 

phases with an amplitude determined by its energy-dependent in-
terval ( ) ( )h hξ ξ+ −− .

Remarkably, in the high energy limit 1h , upon keeping the 
leading asymptotic term in (34), the asymptotic behavior of the LV 
system becomes modeled as a system of two coupled linear 1st or-
der ODEs for each hybrid species. In this asymptotic limit, together 
with the linear ODE (17a) for ( )tη , the system admits trivial expo-
nential solutions remarkably representative of the exact solutions 
of (17). For example, the asymptotic solutions 1h  for the growth 
phase ( )ξ ξ ξ− +≤ ≤  simply are

( ) ( )  1tt e hξ λξ
− += − +  (36a)

( ) ( )1 ( ) ( )t t h tη ξ ξ
λ

−= − −  (36b)



Am J Biomed Sci & Res

American Journal of Biomedical Science & Research

Copyright@ Stefan Bittmann

0509

Figure 5: Solutions for (t)ξ  and (t)η  as a function of time t with  2λ =   and energy 2h =  ; comparison between RK4 numerical integration 
of Eq. (17) and Eq. (34).

The asymptotic decay phase solutions for ( )tξ
 
and )(tη  are 

obtained by invarianceλ − , namely   1/λ λ→ −  together with

( ) ( ) h hξ ξ− +→ .

Lastly, as done with the exact solutions (26) and (27) when
1λ = , upon inserting the hybrid-species populations ( )tξ  

and ( )tη

derived from Eqs. (34) together with the transformation (9) into 
the prey and predator species definition (4), the respective stan-
dard solutions for the original populations ( )u t

 
and ( )v t

 
are fully 

recovered when 1λ ≠

( ) ( ) ( )t tu t e ληξ −
=      for preys   (37a)

)( /( ( )) t tv t e η λξ +=   for predators   (37b)

Oscillation Period of the LV System
The unique invarianceλ −  property of ,( )η ξ λ±

 in (15) 
directly enables to establish two fundamental properties of the 
LV system period [1]. Consider the double mapping of Figure 1 
and follow in a counter clockwise direction the two branches AB−  
and BA+  corresponding to the respective branches ,( )η ξ λ−

 and 
,( )η ξ λ+ : the negative branch AB−  starts at ( )hξ −

 
and ends at 

( )hξ +

 
and conversely for the positive BA+  branch. Upon integrating 

(18) over the variableξ −  and recalling the earlier dimensionless 
time definition, the oscillation period ( )T hλ  

associated with the λ
-mapping is directly obtained as a quadrature over these two 
branches in (38a) in which the negative sign for the second integral 
reflects integration from ξ +

 to ξ − . Similarly, for the 1/ λ -mapping 
the oscillation period is expressed as (38b)

( ) ( ) ( ), ,1

AB BA

d d
T h

h hλ

η ξ λ η ξ λ
ξ ξαδ − +

− + 
= −  + + 

∫ ∫  (38a)

( ) ( ) ( )
1/

,1/ ,1/1

AB BA

d d
T h

h hλ

η ξ λ η ξ λ
ξ ξαδ − +

− + 
= −  + + 

∫ ∫  (38b)

Upon recalling the invarianceλ −  property of Eq. (15), substitu-
tion into (38b) establishes that:

( ) ( )1/ T h T hλ λ=  (39)

Theorem 1. For any value of the positive orbital energy h, the LV 
system oscillation periods respectively corresponding to the coupling 
ratio λ  and its inverse 1/ λ  are equal.

Consequently, an exact, closed-form, regular expression for the 
nonlinear LV system oscillation period, valid for any value of the 
coupling ratio λ  and any value of the orbital energy h, is direct-
ly derived from (38a) as a single integral over the two branches 

( ),  η ξ λ±

( )
( ) ( )( )( )

( )( )
( ) ( ) ( ) ( )

( )

, ,1

, , , ,1
2

h h
T h

h h

x h h x
dx

h x

η λ η λ ξ ξ

λ αδ ξ ξ

ξ η λ η λ η λ η λ
αδ

ξ

− + + −− − − −
= +

+ −+ +

+ − − + +− − + − −
∫
− +

 

(40)

In Appendix 1, for any ( ) ( ) ,  h hξ ξ ξ− +  ∈ , the interval 
),( (,  )η ξ λ η ξ λ+ −−  is shown to be a positive increasing function 
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of λ  when 1λ ≥ (and decreasing when 0 1λ< ≤ ) admitting respec-
tive lower and upper bounds, both of which are minimal when  1λ =

. Together with Eq. (40) this establishes:

Theorem 2. For any value of the positive orbital energy h , the LV 
system oscillation period ( )T hλ  

is an increasing function of λ  for 1λ ≥
(decreasing for 0 1λ< ≤ ) and the period is shortest for 1λ = . 

In the particular case when 1λ = , the exact LV system period 
( )1T h

 
is uniquely expressed in terms of a universal energy function 

( )1 hΘ as

( ) ( )1 1
2T h hπ
αδ

= Θ  (41)

The LV energy function ( )1 hΘ
 
introduced in is defined by inte-

grating (25a) over the entire intervalξ −

( )
( )

1 2 2

1

1 x

dxh
h x e

ξ

ξπ

+

−

Θ =
+ + −

∫
 (42)

At small orbital energy ( 1)h where ( ) 2h hξ ± = ± , the function 
( )1 hΘ  is directly expressed in terms of the complete elliptic integral 

of the first kind ( )K k  with its modulus k

( ) ( )1
1 2 2 2with

1 21 2

hh K k k
hh π

Θ = =
++

  (43)

A standard series expansion for ( )K k
 
yields

( ) ( )2 3
1

1 11
3 42

h h h o hΘ = + + +  (44)

For small oscillation amplitudes, the integral (42) becomes 
independent of the energy h and is exactly equal to π , hence 
 ( )1   1hΘ = ; the LV system becomes that of two coupled harmonic oscil-
lators for which the period ( )T h  solely depends on the pulsation 
αδ , as already established [3,20].

At high orbital energy ( )1h , the contribution from the expo-
nential term in (42) becomes negligible since  0ξ <  over most of 
the integration interval except when ξ  approaches ( )hξ + : since 
by definition ( ) ( )t hξ ξ −≥ , approximating the exponential term by its 
lowest value (2 )he ξ−  and performing the integration yields a useful 
asymptotic expression for  ( )hΘ

( ) ( ) ( ) ( )( )1 ln 2 1asymp h h h with hξ ξ
π

+ −Θ ≅ − + 

 (45)

When 1λ ≠  the exact LV oscillation period ( )T hλ  
is obtained 

by numerically solving the ODE system (17) as done for Figure 
2. Similarly to Eq. (41), for each value of the coupling ratio λ , the 
period ( )T hλ  

is then uniquely expressed in terms of a universal LV 
energy functions ( )hλΘ

( ) ( )2 hT h λλ
π
αδ

= Θ  (46)

As shown on Figure 6 and consistent with Theorem 2, for any 
value of the coupling parameter λ , each function ( )hλΘ , and by 
extension ( )T hλ , is a monotonically increasing function of the en-
ergy-dependent amplitude ( ) ( )h hξ ξ+ −−

 
of the ( )tξ

 
function only 

[20]. Also displayed is the asymptotic approximation (45) which 
is practically indistinguishable from the exact function ( )1 hΘ

 
for 

4h ≥ .

Figure 6: Energy function ( )hλΘ   for 1,2,3,4,5λ =  and asymptotic approximation for  1λ = .
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In this general 1λ ≠  case, an asymptotic formula for the LV 
system oscillation period  ( )T hλ  

valid at high energy ( )1h
 
is  

obtained from the  asymptotic  solutions (36). The contribu-
tion ( )T hλ

+

 
of the exponential growth phase of  ( )tξ

 
to the period is 

readily obtained from (36b) since ( ) 0tη =
 
when ( )tξ  reaches its 

maximum ( )hξ + ; the contribution ( )T hλ
−

 of the decay phase is ob-
tained by invarianceλ − . As a result the high energy ( )1h  asymp-
totic expression for the LV system period ( )T hλ  simply becomes 
proportional to the sum of the ( )tξ −

 
function growth and decay 

rates, λ  and 1/ λ , respectively

( ) ( ) ( )( )1T h h hλ
π λ ξ ξ

λαδ
+ − ≅ + − 

 
 (47)

This asymptotic formula which separately factorizes the LV sys-
tem coupling from the independentλ −  energy contribution satisfies 
both Theorem 1 and Theorem 2 since it is minimal when 1λ = .

Upon comparing the methods of Volterra [3], Hsu [21], Waldvo-
gel [20], and Rothe [22], Shih demonstrated that all of these inte-
gral representations of the period of the two-species LV system are 
equivalent to his own solution in terms of a sum of convolution in-
tegrals [15]. Subsequent approximations of the LV system period in 
terms of power series [23] or perturbation expansions [24] have also 
been published. In Appendix 3, following the derivation of Rothe [22], 
we show that the Hamiltonian (10) based on hybrid-species popula-
tions defined in (9) provides a ”state sum” identical to that of Rothe 
thereby establishing direct equivalence between our LV oscillator 
period and Rothe’s convolution integral.

Conclusion
The coupled 1st order non-linear ODE system for the LV 

problem of two interacting prey and predator species has been 
analyzed in terms of a single positive coupling parameter λ ,  
ratio  of  the  relative  growth/decay rates of each species taken 
independently. Based on a standard functional transformation in-
troducing  ”hybrid-species populations”, a novel invariantλ −  set of 
two 1st order  ODEs is obtained with one being      linear. As              a  result, 
an exact, closed-form   quadrature   solution of  the  LV  problem is 
derived for any value of the coupling ratio λ  and any value of the 
system’s energy (19).

In the 1λ =  case,  the LV problem partially uncouples and 
an exact explicit closed form solution is derived in terms of the 
system’s orbital energy h as a simple quadrature for the time 
evolution of the hybrid-species population ( )tξ ; the other hybrid 
species’ solution ( )tη

 
is explicitly expressed in terms of the 

former (Eqs. (25) and (21)). As a result,  exact uncoupled analytical 
solutions for each of the original prey and predator populations 
( )u t

 
and ( )v t

 
are derived as a function of time.

In the 1λ ≠  case, a invariantλ −  accurate practical approx-
imation is derived that explicitly uncouples the LV system and 
provides a closed-form solution in terms of a single quadrature 
for one of the hybrid-species populations. Remarkably, at high 
orbital energies ( )1h , the original coupled non-linear LV ODE 
system totally uncouples and becomes entirely linear admitting 

trivial asymptotic exponential solutions.

Further, as a consequence of  invarianceλ − , for any value 
of the orbital energy h, the LV system oscillation period  ( )T hλ  is 
shown to be identical when the coupling parameter λ  is inverted 
to 1/ λ   and is smallest when 1λ = . In this particular case, an exact, 
closed-form expression for the non-linear LV system oscillation 
period ( )1T h

 
is derived in terms of a universal LV energy function. 

In the 1λ ≠  case, a simple asymptotic expression for the LV system 
oscillation period is derived for high energies ( )1h .

Appendix 1

This Appendix presents a proof of Theorem 2 introduced after 
Eq. (40). For the positive root ( ),  η ξ λ+ , Eq. (12) is written

( ) ( )2 2 1
n

e e Uηλλλ λ ξ−+ = +  (A1.1)

For any given value of ( ) ( ){ , }h hξ ξ ξ− +∈ , since we seek a posi-
tive root and since by definition 0 1e ηλ−≤ ≤ , this root admits a lower 
and an upper bound

( ) ( ) ( )1 1 1ln 1 , ln 12 2 2U Uλ ξ η ξ λ λ ξ
λ λ λ

      ++ − ≤ ≤ +               
(A1.2a)

Similarly, by invarianceλ − , the negative root satisfies

( ) ( ) ( ) ( ) ( )1 12 2 2ln 1 , ln 1U Uλ ξ η ξ λ λ ξ λ
λ λ

−   − + ≤ ≤ − + −   
   

(A1.2b)

From Eqs. (A1.2) the lower and upper bounding of the roots 
,( )η ξ λ±

 of Eq. (14) enables to prove Theorem 2. From Eq. (40), 
the period depends on the magnitude of the positive interval 

),( (, )η ξ λ η ξ λ+ −− . Upon introducing the “outer limit” ( ),out ξ λ∆
 as

( ) ( ) ( )( )2
2

1 1( ) l n, n 1 l 1out U Uλ ξ λ ξ
λ

ξ
λ

λ   ∆ = + + +    

 (A1.3a)

It is readily seen that ( ),out ξ λ∆ is a positive, increasing function 
of λ  when 1λ ≥  (and decreasing when 1λ ≤ ) whose partial deriva-
tive ( ), /out ξ λ λ∂∆ ∂

 vanishes when 1λ = . Similarly, upon introducing 
the “inner limit” ( ),in ξ λ∆ as

( ) ( ) ( )1 1 1 2 2
2,( ) ln 1 ln 12 U Uin λ ξ λ ξ λ

λλ λ
ξ λ

    ∆ = + − + + −         
(A1.3.b)

It              is   also seen that ( ),in ξ λ∆  is a positive, increasing      func-
tion of  λ     when   1λ ≥  (and decreasing when  1λ ≤ ) whose partial 
derivative ( ), /in ξ λ λ∂∆ ∂

 also vanishes when 1λ = . Since the pos-
itive interval ),( (, )η ξ λ η ξ λ+ −−  obviously satisfies

( ) ( ) ( ) ( ), , , ,in outξ λ η ξ λ η ξ λ ξ λ+ −∆ ≤ − ≤ ∆  (A1.4)

This proves Theorem 2.

Appendix 2

Upon recalling the definition (13) of ( )U ξ , the solution (25a) is 
expressed as
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2
1 2

2
t( ) cosh ( ( )) ( ) 1

( 1 ) 1 ( )

xeU e U dx
h x U x

ξ
ξ

ξ

ξ ξ ξ
−

−

−
= + − +

+ + −
∫

 
(A2.1)

Since ( )1 hU eξ≤ ≤ , a binomial expansion of the integrand with 
binomial coefficients expressed in terms of the Gamma function 
( )pΓ

 
yields an exact solution in terms of a converging series

1 2t( ) cosh ( ( )) ( ) 1
1

22 ( )2
1 10 ( 1)
2

U e U

pxe U x dx
h xp p p

ξξ ξ ξ

ξ

ξ

−= + − +

 Γ − ∞  ∑ ∫
+ +  −= Γ − Γ + 

 

(A2.2)

The first integral ( ) 0p =
 
is directly expressed in terms of the ex-

ponential integral function ( )Ei x , with the argument  0x >

( )
2

2( 1) 2Ei(2( 1 )) Ei(2 )
1

x
he dx e h e

h x

ξ
ξ

ξ

ξ
−

−

− += + + −
+ +∫  (A2.3)

When inserted into (A2.2) this expression provides a zeroth 
order ( ) 0p =

 
solution for ( )t ξ , hence for ( ) ( )1 t tξ ξ−=

 
as discussed 

earlier.

When the integer p is 1, 2, 3, . . . , each integral ( )2 pI ξ
 
in (A2.2) 

is of the form

2

2 2 1( )
( 1 )

px

p p

e dxI
h x

ξ

ξ

ξ
−

+=
+ +∫  (A2.4)

Successive integration by parts and substitution into (A2.2) re-
sult in a convergent series of exponential integral functions with 
positive argument of the form ( ) ( )2 1 (2  1 )p he Ei p h ξ+− + + .

Appendix 3

Based on thermodynamics, Rothe [22] established that the La-
place transform of the period function ( )T h , in which h is the sys-
tem’s energy, is the canonical state sum ( )Z β

 
of the Hamiltonian (6), 

with ( )0,β ∈ ∞
 
as the inverse of the absolute temperature, namely

( , )

0

( ) ( )H x y hZ e dxdy e T h dhβ ββ
+∞ +∞ ∞

− −

−∞ −∞

= =∫ ∫ ∫  (A3.1)

From Eqs. (10) and (7) together with the definition (11) of the 
G-function, the LV system’s Hamiltonian is

( )1( , ) ( ) 1H G eξλη ξ λ η ξ
λ

 = + − − 
 

 (A3.2)

For notation purposes, we introduce the reduced functiong −

( )gλ η  defined as

1( )g e e
η

ηλλ
λ η λ

λ
−= +  (A3.3)

Consequently, upon inserting the Jacobian 1  J λ
λ

 = + 
 

 of the lin-
ear transformation (9)

1( ) ( 1)1( )
g e

Z e d d
ξ

λβ η λ β ξ
λβ λ ξ η

λ

 +∞ +∞ − + + + 
 

−∞ −∞

 = + 
  ∫ ∫  (A3.4)

Upon substituting s eξ=  with ( ) 0,  s ∈ ∞ , (A3.4) becomes

1 1 1
( )

0

1( ) sgZ e s e dsdλ
β λ β λ

β ηλ λβ λ η
λ

   +∞ ∞+ + −    −   

−∞

 = + 
  ∫ ∫  (A3.5)

The integration over s  is expressed in terms of the Gamma 
function ( )sΓ :

1
11 1( ) ( ( ))eZ g d

β λ
λ β λ

λ
λβ λ β λ η η

λ β λ

 +    +∞ − +   
 

−∞

      = + Γ +           
∫  (A3.6)

Together with the above definition of ( )gλ η  this definite integral 
has been evaluated (see 3.314 in [25]); the invariantλ −  state sum
( )Z β

 
thus becomes

( ) ( )e eZ

ββλ
λλ ββ βλ

βλ β λ

 
 
      = Γ Γ    

    
 (A3.7)

Although the Hamiltonian (A3.2) is defined in the ξ η−  space, 
the result (A3.7) for the state sum ( )Z β

 
is identical to that of Rothe 

(Eqs. (9) and (10) in [22]) who used the ”planar” Hamiltonian 
(6) in the x y−  space. The derivation of the period then directly 
follows Rothe who defines a function ( )hτ

 
(Eqs. (15), (16), and (17) 

in [22]) whose Laplace transform is

0

( ) ( )h ee h dh
β

β τ β
β

∞
−  

= Γ 
 

∫  (A3.8)

Since our state sum (A3.7) is expressed as the product of two 
Laplace transforms similar to (A3.8), use of the Hamiltonian (A3.2) 
establishes that the period ( )T hλ

 
of the LV system (17) is directly 

equivalent to that of Rothe. Upon recalling the earlier definition of 
the dimensionless time, the period is expressed as a invariantλ −
convolution integral satisfying Theorem 1 with ( )hτ

 
defined above

 

( )( )
0

1T ( )
h sh h s dsλ τ τ λ

λαδ
 = − 
 ∫  (A3.9)
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