
231231

Folate Metabolism. Polymorphisms of 
Methylentetrahydrofolate Reductase.  

Concurrent Factor in Pathogenic Effects

Copyright © Luis E Voyer

This work is licensed under Creative Commons Attribution 4.0 License  AJBSR.MS.ID.002577

American Journal of
Biomedical Science & Research

www.biomedgrid.com

---------------------------------------------------------------------------------------------------------------------------------
ISSN: 2642-1747

Review Article 

Luis E Voyer*     
Associated with the Faculty of Medicine, University of Buenos Aires, Argentina

*Corresponding author: Luis E Voyer, Teaching and Research Committee. Hospital Pedro de Elizalde, Associated with the Faculty of Medicine, 
University of Buenos Aires, Argentina.

To Cite This Article: Luis E Voyer*. Folate Metabolism. Polymorphisms of Methylentetrahydrofolate Reductase. Concurrent Factor in Pathogenic 

Effects. Am J Biomed Sci & Res. 2023 19(2) AJBSR.MS.ID.002577, DOI: 10.34297/AJBSR.2023.19.002577

Received:  June 20, 2023;  Published:  July 05, 2023

Abstract

Vitamin B9, folate in its natural form is present in vegetables, fruits and organ meats. The function of folate is to act in processes 
of transfer one carbon compounds, methylation on nucleotides, amino acids and phospholipids, processes of vital importance 
for cell division, synthesis of nucleic acids, amino acids and methionine from homocysteine1. Folic acid is the synthetic form 
most used as a supplement to compensate low intakes of folate but has not normal biological actions if it is not converted to 
5-methylenetetrahydrofolate, by the enzyme methylenetetrahydrofolate reductase. This enzyme may presents polymorphism 
due to mutation with biotypes of varied activity. The most commonly present, C677C and A1298A, has full activity, but C677T 
and T677T and A1298C and C1298C with decreased activity between 30 and 70 %, can cause metabolic alterations such as 
hyperhomocysteinemia and DNA hypomethylation with increased risk for chromosomal abnormalities and various pathological 
conditions, as neural tube development disorders, early recurrent pregnancy losses, Down syndrome, cleft lip and/or palate, limb 
reduction, cancer, mediterranean familial fever, polycystic ovarian syndrome and neurological or cardiovascular diseases. Faced 
with a history of these disorders and the presence of the aforementioned enzyme biotypes, the replacement of folic acid by L 
5-methylenetetrahydrofolate supplied together with vitamin B12, B2, and B6 may reduce the risk. Beside this, with excessive intakes 
of folic acid, especially when low activity of the enzyme is preset, high levels in the blood can be produced, with consequently higher 
risk of various health problems. To avoid this, recommended intakes of folic acid should not be exceeded. 
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Introduction
Vitamin B9, folate in its natural form is present in green vege-

tables, fruits and organ meats. Folic acid is the synthetic form wi-
dely used as a supplement to compensate low intakes of folate as 
happens with processed and ultra processed foods as habitual fee-
ding. However, for normal biological actions folic acid must be con-
verted into 5-methylenetetrahydrofolate (5-MTHF) by the enzyme 
Methylenetetrahydrofolate Reductase (MTHFR).

The function of folate is to act together with vitamins B12, B2 
and B6 in the transfer of one carbon units, methylation processes 
on nucleotides, amino acids and phospholipids, processes of vi-
tal importance for cell division, synthesis of nucleic acids, amino  

 
acids and methionine from homocysteine [1]. Folic acid does not 
have normal biological actions if it is not converted by the enzy-
me MTHFR into 5-10-methylenetetrahydrofolate (5-10-MTHF) and 
5-MTHF, the predominant form in the circulation. The bioavailabi 
lity of folic acid is greater than that of folate, which depends on its 
content in food and its absorption, which can be interfered with by 
antinutrients, such as alcohol [2,3] or tobacco [4]. Blood folate le-
vels are 15% lower in smokers and reduced transport of folate to 
the fetus has been observed in pregnant women who smoked or 
abused alcohol during pregnancy [5,6]. Folate absorption is also de-
creased by inflammatory bowel diseases such as ulcerative colitis, 
regional enteritis, Crohn’s disease, or celiac disease [7].
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Methionine Synthase (MS) produces methionine from the re-
methylation of homocysteine, methionine by action of the enzyme 
adenosyl transferase gives rise to its methyl donor form, S-Ade-
nosylmethionine (SAM) essential for many methylation reactions, 
including methylation of DNA-by-DNA Methyl Transferase (DNMT) 
essential for its stabilization and control of gene expression, critical 
during cell differentiation [8,9]. The folate content, as well as other 
nutrients, varies according to age of the plant, time of the year, soil 
moisture and form of consumption; fresh preparations without 
prior cooking and fruits with a low degree of maturity have higher 
contents. All these differences have implications for the bioavaila-
bility of natural folate, while that of folic acid as a supplement is 
100%, but when added to food it is reduced to approximately 85% 
[10].

Dietary folate is mostly reduced molecules while folic acid is 
fully oxidized. Natural sources of folate occur especially in avoca-
do, orange, beetroot, asparagus, spinach, lettuce and broccoli. Folic 
acid should be considered as a medication to compensate for low 
folate intake from diets low in vegetables and abundant in pro-
cessed foods. Although the majority of folic acid is converted into 
5-MTHF, with excessive intake, high levels in the blood that have not 
been converted can be detected and numerous health problems can 
occur, such as leukemia, asthma, depression, even the progression 
of pre-existing neoplastic lesions or preneoplastic diseases [11-14].

Folate metabolism is compartmentalized in the cytoplasm, mi-
tochondria, and nucleus with specific interdependent metabolic 
pathways. The entry of folate into cells is made by membrane tran-
sporters or by folate-binding proteins; 40% of cellular folate is in 
the mitochondria, 10% in the nucleus, and 50% in the cytoplasm. 
Folate catabolism is extremely slow but is accelerated by Metho-
trexat (MTX), which acts as an antifolic, with consequent DNA hypo-
methylation [15]. Inadequate availability of folate, consequence of 
a deficit in intake, malabsorption or alterations in methylation pro-
cesses due to mutation polymorphisms with decreased activity of 
enzymes involved, mainly MTHFR, can cause metabolic alterations, 
lower concentration of 5-MTHF, decreased trans-sulfurization for 
glutathione synthesis with increased oxidative stress [3-18] and 
increased folic acid and homocysteine and DNA hypomethylation 
with increased risk for chromosomal abnormalities and various pa-
thological processes [19].

The frequencies with which the MTHFR biotypes 677C>T and 
1298A>C occur in the general population have been studied in 
many countries [20,21]. The dispersion of frequencies in popula-
tion groups of seven of these countries [22-28] of biotypes CC, CT 
and TT for 677 are, respectively: 36.5-71.2%, 26-51.2% and 3.9-
20.9%; and in 5 of these countries [22-26] of biotypes AA, AC and 
CC for 1298 are: 39.8-70.1%, 8.8-47.2% and 3.6-13-5%. The deter-
mination of these biotypes is carried out by PCR [29] techniques 
and we have required it in certain clinical cases, but no studies have 
been carried out in Argentina in order to show frequency in our 
population.

Methylenetetrahydrofolate Reductase Poly-
morphism and Related Disorders

Heterozygous biotypes C677T and A1298C show significant pa-
thological associations and even more so, although less frequent, 
homozygous T677T and C1298C. The reason why these biotypes 
increase the risk for various pathologies is because they are more 
thermolabile and have less activity, between 30 and 70% of normal.

Taking into account the very high frequency in the general po-
pulation of the MTHFR gene mutation that gives rise to the referred 
biotypes, and the very low prevalence of the pathologies with whi-
ch associations have been observed, it is necessary to accept the 
presence of concurrent factors. Genetic factors, homozygous, he-
terozygous, other enzymes, as MS, SAM, DNMT. Epigenetic factors, 
mainly habits as alcohol or tobacco [2-6] and nutrition, including 
for some of these associations, the nutrition of the maternal grand-
mother in whose womb the oogenesis of the future mother occurs.

Neural Tube Developmental Disorders

The best known and widespread benefit of folic acid admini-
stration to prevent pathological alterations is in relation to Neural 
Tube Developmental (NTD) disorders, pathology in which, before 
the use of folic acid, prevalence of up to 18.6 per 10,000 births were 
recorded [30].

With the folic acid supplement, a significant reduction of ap-
proximately 75% of this pathology was observed, was prevalence 
as low as 5 per 10,000 births. To explain cases that are not preven-
ted with folic acid supplementation, the studies carried out show 
that the most common associated alteration is the presence of the 
C677T biotype with 2 to 4 times greater risk and secondly, that of 
A1298C [31-35].

Recurrent Early Pregnancy Loss

In recurrent pregnancy loss, chromosomal abnormalities, ute-
rine abnormalities or acquired thrombophilia may be the cause, but 
in a large number of cases the etiology is unknown [36].

Meta-analysis of 5,888 cases with 8,400 controls from 39 stu-
dies, from Caucasian population groups, showed a significant as-
sociation with increased risk, with the C677T and A1298C MTHFR 
[37]. Another study with Chinese women also showed this associa-
tion and also with a higher risk of male infertility [38].

Down Syndrome

As early as 1999 it was observed that MTHFR mutations with 
the consequent metabolic alterations could be risk factors for Down 
Syndrome (DS) [19].

Polymorphisms C677T and A1298C of MTHFR, and elevated 
plasmatic homocysteine were seen in 72 DS mothers with 194 con-
trols, being a risk factor for DS. Chromosomal non-disjunction was 
also observed in lymphocytes from DS mothers who showed this 
association [22,39,40].
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Chromosomal aneuploidy, trisomy 13, 18 and mainly the most 
frequent, trisomy 21, constitute the main cause of fetal death in 
our species. In early pregnancy losses, during the first 15 weeks 
of gestation, 50% of the cases show chromosomal aneuploidy and 
trisomy 21, the most common due to non-disjunction during meio-
sis in oogenesis, is the most common chromosomal abnormality in 
newborns. Review studies and meta-analysis carried out on publi-
cations up to 2021 show the C677T biotype as the first polymorphi-
sm associated with DS [41-44]. Maternal MTHFR polymorphisms in 
interaction with habits [2-4] (alcohol, tobacco) and food increase 
the risk of errors in meiosis II in oocytes regardless of maternal age 
[45]. These factors are even important during the first meiotic divi-
sion in the maternal grandmother.

Cleft Lip and/or Palate

A significant association was observed between cleft lip and/
or palate with maternal biotypes and T677T but not with A1298C 
[46,47].

Limb Reduction

Defects due to transverse or longitudinal reduction of the extre-
mities are of multifactorial etiology. Although more than 50 genes 
involved in the development of limbs have been identified, little is 
known about the genetic etiology of deficiencies in this develop-
ment [48].

Epidemiological studies show a decreased risk for defects in 
limb development with periconceptional multivitamin supplemen-
tation with folic acid, and risk assessment with MTHFR biotypes 
show an increased risk with C677T only when periconceptional vi-
tamin supplementation was not used [49].

A prevalence of limb reductions of 2.7 per 10,000 births with 
the use of folic acid during pregnancy has been reported in nor-
thern China, compared to 9.7/10,000 when folic acid was not used, 
with a statistically significant association for upper limb reductions. 
In southern China, no differences were observed [50].

Cancer

Polymorphisms due to MTHFR mutations with decreased acti-
vity and consequent alteration in blood folate level and increase in 
homocysteine are associated with various types of cancer, in some 
cases with chromosomal breaks [51]. Deviations in the complex 
regulatory mechanism of DNA methylation lead to hypomethyla-
tion or hypermethylation with loss of DNA stability or decreased 
expression of tumor suppressor genes with cancer implications 
[17,18].

In particular, increased risk has been reported for: breast can-
cer [52], cervical, ovarian or endometrial cancer [53], hepatocel-
lular cancer [54], acute lymphoblastic leukemia and non-Hodgkin 
lymphoma in adults [55] and acute lymphoblastic leukemia in chil-
dren [56].

Familial Mediterranean Fever

Familial Mediterranean Fever, recessive hereditary auto inflam-
matory disease, showed association with T677T and A1298C [57]. 

Polycystic Ovary Syndrome

Polycystic ovarian syndrome is an endocrine and metabolic 
disease that affects women of childbearing age for which no tre-
atment has been reported. Its etiology is unknown, but its pathoge-
nesis is considered to be multifactorial.

Elevated levels of homocysteine are observed, known factors 
also involved in pregnancy loss and reduced ovulation. Homocy-
steine levels are strongly determined by enzymatic activity of 
MTHFR with biotypes C677T, A1298C and MS with biotypes A66G 
associated with increased risk. Adequate treatment for the meta-
bolic disorder of folate can reduce the risk for this disease [58,59].

Neurological Disorders

According to a review of publications carried out up to 2020 
between neurodegenerative diseases with enzyme mutations invol-
ved in folate metabolism with high homocysteine levels, folic acid, 
vitamin B6 and B12 supplementation aimed at reducing homocy-
steine levels have potential therapeutic applications [60].

Also, mutations in folate 1 receptor have been reported, asso-
ciated with progressive motor disorders with psychomotor decli-
ne and epilepsy with a significant decrease in the concentration of 
folate in cerebrospinal fluid, profound hypomethylation, decreased 
choline and inositol in glial cells. Restoration was referred to with 
folinic acid, with clinical improvement, postnatal myelination and 
brain development [61,62].

Cardiovascular Disease

Whether due to folate or vitamin B12 deficiency or MTHFR 
polymorphism, increases in homocysteine can be observed, a 
known factor that increases the risk of cardiovascular disease. On 
the risk of cardiovascular disease associated with MTHFR polymor-
phisms, with biotypes C677T, T677T and A1298C, observations are 
still insufficient, but they seem to be associated with increases in 
homocysteine [63-65].

Prevention of Recurrences
Faced with a history of disorders such as those referred, the 

presence of MTHFR biotypes, mainly C677T and/or T677T, and/
or A1298C and/or C1298C, can prevent recurrences by reducing 
the risk, with the substitution of folic acid supply, by L 5-MTHF 
supplied together with vitamin B12, B6, B2, C and D with controls 
to maintain normal levels of the same and homocysteine. 5-MTHF 
must necessarily be specified to be the left-handed form, L 5-MTHF. 
The D forms should not be used due to low bioavailability. B12 
levels greater than 500pg/ml, folate greater than 10mg% and ho-
mocysteine less than 10mg% should be maintained.
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In recurrent pregnancy loss with a diagnosis of thrombophilia 
that did not respond to heparin treatment (generally successful 
for acquired thrombophilia) and presence of the referred MTHFR 
biotypes (possible hereditary thrombophilia) in addition to hepa-
rin treatment, daily supply of 5mg of L-MTHF during 3months prior 
gestation and 1mg the entire course of the pregnancy together with 
B12, B6, B2, C and D, risk of recurrence may decrease.

Side Effects of Folic Acid
A systematic investigation of publications up to 2018 with 108 

articles referring to 133 meta-analyses studies with 154 controls, 
shows beneficial effects of folic acid supplementation in the pre-
vention, evolution and mortality rates in various types of cancer, 
neurological diseases and in pregnancy and its final product, but 
in addition to these benefits, adverse effects are recorded, such as 
increased risk of prostate cancer, allergies, asthma, and depression 
[11-13].

 In interpreting this increased risk for adverse effects, food 
fortification programs with folic acid should first be taken into ac-
count, such as the one implemented in 1998 in the United States, 
extended to a total of 80 countries, with an estimated contribution 
of between 100 and 200ug per person per day. In Argentina, the 
addition of folic acid to wheat flour is regulated along with iron, 
thiamine, riboflavin and niacin, in containers labeled in this regard, 
excluding flour intended for the production of dietary products and 
for export. It should be considered that this addition should be ex-
tended to all flours, such as corn and rice to cover differences in ea-
ting habits by ethnic groups or sensitivity to gluten gliadin, mainly 
wheat.

For women of childbearing age, the contribution should be 
400ug per day. In peri-conceptional supplementation, 1mg per day 
should be adequate and only when there is a history of NTD disor-
der, this supplementation should be 5mg per day.

Higher intakes can cause high levels of circulating unmetaboli-
zed folic acid, a reason for adverse effects, especially when there are 
MTHFR biotypes with decreased activity.
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