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Abstract

The application of new techniques in eye imaging has revolutionized the process by increasing accuracy and efficiency levels 
considerably. An essential aspect of analyzing ocular images is the correct segmentation of retinal vessels. Deep learning algorithms 
represent an effective solution giving high accuracy rates for this task. In this article readers can find an extensive overview of 
several novel approaches built specifically to address this issue-among them being a groundbreaking deep learning architecture 
that applies multi-scale/multi-level Convolutional Neural Networks (CNNs) to obtain a comprehensive hierarchical representation 
of retinal vessels. Furthermore, advanced approaches are also discussed on detecting retinal vessels from Fluorescein Angiography 
(FA) images - with notable examples being one that combines cross modality transfer with human in the loop learning helping 
reduce manual labelling efforts significantly while enhancing both accuracy and performance metrics simultaneously. These state-
of-the-art methods unravel critical insights into how deep learning methods could improve retinal vessel segmentation. The impact 
they could have on diagnosing and treating various eye related illnesses is also noteworthy.
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Introduction
The progress made in eye imaging technology is commendable 

especially with regards to deep learning techniques employed for 
ocular image analysis. The benefits are evident as these methods 
hold great promise for improving accuracy and efficiency during 
retinal vessel segmentation-an important aspect of eye imaging 
practice. In this article we delve into this topic deeply by providing 
an overview of several innovative approaches being developed to 
tackle this issue. A standout technique among them includes “Deep 
Vessel” architecture introduced by Huazhu Fu, et al.,[1]. In their 
inventive method they utilized a multi-level Convolutional Neu-
ral Network (CNN) working at different scales to extract detailed 
hierarchical representations of retinal vessels while simulating 
long range interactions between pixels using Conditional Random 
Field (CRF). As expected with such sophisticated design approach-
es these components blend smoothly into a single cohesive deep  

 
network resulting in impressive outcomes during testing trials. 
Other notable cutting-edge methods highlighted in this article are 
approaches by Li Ding, et al., [2] for identifying retinal vessels in 
Fluorescein Angiography (FA) images. Efficiently segmenting reti-
nal vessels has long been an area with many challenges, but recent 
developments in deep learning are already transforming this field. 
A fascinating article delves into an innovative combined approach 
using cross-modality transfer along with human-in-the-loop learn-
ing to minimize manual labour while boosting accuracy and overall 
performance levels significantly. These techniques offer tremen-
dous potential for advancing the diagnosis as well as treatment of 
eye disorders through sophisticated ocular imaging techniques.

State of the Art
In the realm of eye imaging, recent breakthroughs have high-
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lighted the application of deep learning methods for examining 
ocular images. Retinal vessel segmentation is a crucial aspect of 
ocular imaging, boasting a multitude of uses. A trailblazing team 
of researchers, spearheaded by Huazhu Fu, et al., [1], tackled this 
issue by viewing it as a boundary detection task and introducing 
a groundbreaking deep learning architecture known as the “Deep 
Vessel.”

This inventive method revolves around two primary concepts. 
Firstly, a multi-scale and multi-level Convolutional Neural Network 
(CNN) was employed, incorporating a side-output layer that facil-
itated the extraction of a comprehensive hierarchical representa-
tion of retinal vessels. This approach allowed the network to detect 
subtle details and features that might otherwise go unnoticed. Sec-
ondly, the researchers simulated long-range interactions between 
pixels using a Conditional Random Field (CRF). By merging these 
two layers, the “Deep Vessel” was born, forming a cohesive deep 
network that smoothly integrates the CNN and CRF components.

In a series of experiments carried out by a group of researchers, 
the “Deep Vessel” system proved to be highly effective. Its top-of-
the-line performance in segmenting retinal blood vessels within 
the DRIVE, STARE, and CHASE DB1 datasets was evident. These 
discoveries underscore the vital importance of deep learning meth-
odologies in examining ocular imagery and set the stage for future 
breakthroughs within the field of eye imaging. The “Deep Vessel” 
framework, devised by Huazhu Fu’s team, offers a potential solu-
tion to the challenge of retinal vessel segmentation and could great-
ly impact the diagnosis and treatment of a variety of eye-related 
illnesses.

The implementation of deep learning techniques within the 
realm of ocular imaging has garnered considerable interest in re-
cent times. Fu and his fellow researchers zeroed in on the issue of 
segmenting blood vessels within eye images, assessing and critiqu-
ing established methods like machine learning, adaptive models, 
and blood vessel tracking techniques. Ultimately, the research team 
introduced an innovative deep learning structure -the Deep Ves-
sel-which achieved unparalleled success in the area of retinal blood 
vessel segmentation.

The trailblazing group headed by Li Ding, et al., [2] has created a 
cutting-edge approach for identifying retinal vessels in Fluorescein 
Angiography (FA) images through the use of Deep Neural Networks 
(DNNs). This revolutionary process considerably lessens the manu-
al labour needed for annotating ground truth data, which is crucial 
for developing precise and efficient DNNs for retinal vessel iden-
tification. The process is composed of two primary components: 
cross-modality transfer and human-in-the-loop learning. The pro-
cess of cross-modality transfer is facilitated through the simultane-
ous acquisition of Colour Fundus (CF) and fundus FA images. Ini-
tially, a pretrained neural network extracts binary vessel map from 
the CF images. These maps are then aligned and transferred to FA 
images using a sturdy parametric chamfer alignment applied to an 

unsupervised preliminary identification of FA vessels. This stage 
progressively enhances the accuracy of ground truth labelling by 
integrating the transferred vessels as the initial ground truth labels.

The human-in-the-loop learning segment of the process is an 
ongoing interplay between deep learning and manual annotation, 
which improves the quality of ground truth labelling, lessens the 
manual labour required for annotation, and facilitates expert in-
volvement in the procedure. The authors of this innovative process 
examine several essential aspects of the methodology and demon-
strate its performance on three distinct datasets. The findings re-
veal that the process surpasses existing FA vessel detection tech-
niques and provides an accurate solution for identifying retinal 
vessels in FA images.

Moreover, the team has developed a new publicly available 
dataset, RECOVERY-FA19, consisting of high-resolution ultra-wide-
field images and precisely labelled ground truth binary vessel 
maps. This dataset serves as a valuable asset for researchers in the 
field and fosters the advancement of deep learning algorithms for 
retinal vessel identification in FA images.

In summary, the process proposed by Ding, et al., [2] signifies 
a considerable breakthrough in medical imaging and holds the po-
tential to transform how retinal vessels are detected in FA images. 
The combination of cross-modality transfer and human-in-the-
loop learning substantially reduces manual labelling efforts while 
enhancing accuracy and performance. This work has far-reaching 
consequences for diagnosing and treating eye conditions and offers 
a promising solution for identifying retinal vessels in FA images.

Zengqiang Yan, et al., [3] explored the use of deep learning tech-
niques for retinal blood vessel segmentation, which is crucial for 
diagnosing and treating eye-related conditions. Conventional deep 
learning approaches using pixel-wise losses struggle to accurately 
segment narrow vessels due to the uneven proportion of narrow 
and wide vessels’ thickness in fundus images. The researchers pro-
posed a novel segment-level loss that focuses on maintaining the 
consistency of narrow vessel thickness during training. Combining 
segment-level and pixel-level losses, the joint-loss framework bal-
ances the weights assigned to wide and narrow vessels, enhancing 
vessel segmentation. This approach could significantly influence 
the diagnosis and treatment of eye-related disorders by providing a 
more accurate and efficient method for retinal vessel segmentation.

Wang, et al., [4] developed a deep learning framework based on 
the traditional Convolutional Neural Network (CNN) model, U-net, 
to precisely pinpoint the Optic Disc (OD) in colour fundus images, 
which is crucial for detecting and diagnosing retinal diseases. The 
two-phase framework consists of training the U-net model with co-
lour fundus images and monochromatic vessel density maps and 
using an overlap technique to combine the segmentation results. 
The proposed framework outperformed the standalone U-net mod-
el, achieving high accuracy in OD segmentation. While the study 
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shows the potential of this deep learning framework, further re-
search is needed to confirm its clinical applicability and effective-
ness. Nonetheless, the results offer a promising outlook for future 
advancements in deep learning for retinal disease diagnosis.

Pan Xiuqin, et al., [5] addressed the challenges of existing retinal 
vessel segmentation methods by developing a technique using an 
enhanced U-Net deep learning model. The team improved retinal 
image quality and incorporated a residual module into the net-
work design to address the insufficient depth of traditional U-Net 
models. The approach was evaluated using the DRIVE dataset and 
achieved impressive results in segmenting retinal blood vessels, 
even with pathological data. The study highlights the advantages 
of incorporating residual modules into U-Net models for retinal 
vessel segmentation, but further research is needed to validate its 
clinical utility and effectiveness. The results provide promising evi-
dence for future advancements in deep learning for retinal disease 
diagnosis.

Wu, et al., [6] investigation in 2019 focused on combining resid-
ual network architecture with DenseNet to improve learning retinal 
blood vessel morphological structures but faced challenges due to 
the Dense Block framework’s memory requirements and compu-
tational complexities. Zhang, et al., [7] mf-fdog matching filtering 
approach and Vlachos and Dermatas, et al., [8] iterative line track-
ing program have their advantages and drawbacks. Model-based 
methods and Espona, et al., [9] serpentine model, combined with 
morphological operations, offer alternative approaches.

Toufique Soomro, et al., [10] examined over 80 literature piec-
es on retinal vessel detection and found only 17 papers addressing 
segmentation using deep learning techniques. The study provides 
an in-depth analysis of various deep learning strategies, such as 
CNNs, RNNs, and GANs, highlighting their strengths and limita-
tions. The authors suggest future advancements in retinal image 
examination by developing innovative deep learning methods and 
combining existing techniques for improved precision and efficacy. 
Erick Rodrigues, et al., [11] introduced a method for retinal vessel 
segmentation that combines region growing and machine learn-
ing techniques. The unique feature extraction approach uses grey 
level and vessel connectivity characteristics for better information 
dissemination during classification. The method outperformed 25 
of the 26 compared techniques on the DRIVE dataset and achieved 
high accuracy scores on STARE, CHASE-DB, VAMPIRE FA, IOSTAR 
SLO, and RC-SLO datasets. The approach has the potential to im-
prove accuracy and efficiency in retinal vessel segmentation.

Maninis, et al., [12] introduced Deep Retinal Image Understand-
ing (DRIU), a framework that uses Convolutional Neural Networks 
(CNNs) to address retinal vessel and optic disc segmentation. The 
DRIU system surpassed human annotators in all instances and 
showed consistency with the gold standard. This work demon-
strates the potential for a unified approach to retinal vessel and 
optic disc segmentation, with implications for the development of 
advanced diagnostic tools for ocular diseases. The findings suggest 
that DRIU could reshape retinal image analysis and pave the way 
for future advancements in the field (Table 1).

Table 1:

Authors Year Title Methods Results

Huazhu Fu, et al., 2016

DeepVessel: Retinal Vessel 
Segmentation via Deep 
Learning and Conditional 
Random Field

·         DeepVessel: retinal 
vessel segmentation method 

·         Novel deep learning 
architecture

·         Three main layers: 

a.        Convolutional 
layerlearns local feature 
representations from 
random patches

b.       Side-output layer: acts 
as classifierproduces local 
outputs for early layers

c.        CRF layer: models 
non-local pixel correlations 
considers long-range 
interactions

·         Evaluation on three 
publicly available datasets: 
DRIVE, STARE and CHASE 
DB1 

·         Comparison with 
state-of-the-art vessel 
segmentation methods

·         DeepVessel system 
produces state-of-the-art 
results on all datasets

·         Individual and average 
fusion results of side-output 
layers provided

·         DeepVessel with CRF: 
clearer vessel segmentation 
than fusion result from side-
output layers alone
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Li Ding, et al., 2020

A Novel Deep Learning 
Pipeline for Retinal Vessel 
Detection in Fluorescein 
Angiography

·         Novel pipeline: 
detecting retinal vessels in 
Fluorescein Angiography 
(FA) images

·         Reduces effort for 
generating labeled ground 
truth data

·         Two key components: 

1.       Cross-modality transfer 
exploits concurrent CF and 
FA images

2.                   Human-in-
the-loop learning: iterates 
between deep-learning and 
labeling

·         Benefits: 

§  Reduces manual labeling 
effort 

§  Increases engagement 

§  Outperforms existing FA 
vessel detection methods 

·         Introduces new public 
dataset RECOVERY-FA19 
(high- resolution ultra-
widefield images, accurate 
ground truth binary vessel 
maps)

·         Significantly reduces 
annotation effort

·         Outperforms existing 
FA vessel detection methods 

·         Best performing 
method: 

§  Maximum dice coefficient 
of 0.854 

§  Significant improvement 
over prior methods 

·         Adapts well to contrast 
changes in FA imagery 

·         Releases new dataset: 
UWFFA images from 
RECOVERY trial 

·         Contributions: 

§  Innovative pipeline for 
training data generation 

§  First deep learning 
approaches demonstration 

§  Evaluation of alternative 
architectures 

§  New ground truth labeled 
datasets

Lei Wang, et al., 2019

A coarse-to-fine deep 
learning framework for 
optic disc segmentation in 
fundus images

·         Coarse-to-fine deep 
learning framework based 
on U-net model

·         Goal: accurately and 
automatically segment optic 
disc (OD) on color fundus 
images 

·         Integrates two types of 
image information 

a.        Pixel intensities 

b.       Vessel density 

·         Leverages coarse-to-
fine segmentation strategy 

·         Vessel density map: 
characterizes spatial 
relationship between OD 
and retinal vessels 

·         U-net model trained on:

§  Color fundus images 

§  Vessel density maps 

§  4-channel composite 
images 

§  Local disc image patches 

·         Validation 2,978 images 
from collected dataset and 
six public datasets

·         Validated on 2,978 
images from collected 
dataset and six public 
datasets 

·         Demonstrates 
effectiveness and robustness 
against 

§  Different fundus cameras 

§  Imaging conditions 

§  Image resolutions 

§  Abnormalities 

·         Achieved average 
IoU and DSC of 89.1% and 
93.9% respectively

·         Compared to 87.4% and 
92.5% by sole U-net model 

·         Reliable and high 
performance in automated 
OD segmentation compared 
to available approaches
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Cong Wu, et al., 2019

DA-U-Net: Densely 
Connected Convolutional 
Networks and Decoder with 
Attention Gate for Retinal 
Vessel Segmentation

·         Improved model for 
retinal vessel segmentation 

·         Based on U-Net 
networks 

·         Densely-Attention-U-
Net (DA-U- Net): combines 
d e n s e l y - c o n n e c t e d 
convolutional network and 
attention gate (AG) model 

·         Benefits

§  Alleviates vanishing-
gradient problem 

§  Strengthens feature 
propagation

§  Reduces number of 
parameters

§  Automatically focuses on 
target structures without 
extra supervision

·         Verified on DRIVE 
datasets

·         Achieved 96.09% 
segmentation accuracy rate 
higher than U-Net and R2U-
Net

·         Densely-Attention-U-
Ne (DA- U-Net) verified on 
DRIVE datasets 

·         Achieved 96.09% 
segmentation accuracy rate 

·         Higher than U-Net and 
R2U-Net

·         Advantageous for 
retinal vessel segmentation 

·         Provides valuable 
information for timely 
patient treatment 

·         Limitation: fails to 
detect very thin vessels (1 
pixel) 

·         Potential improvement: 
incorporating prior 
knowledge on vessel 
structures (e.g., 
connectivity)

Pan Xiuqin, et al., 2019

A fundus retinal vessels 
segmentation scheme 
based on the improved deep 
learning U-Net model

·         Fundus retinal vessels 
segmentation scheme 

·         Based on improved 
deep learning U-Net model 

·         Method involves 

Enhancing retinal images 

a.        Adding residual module 
in network structure design 

b.                   Connecting 
convolutional layer output 
with deconvolution layer 
output

·         Benefits: 

§  Avoids low-level 
information sharing

§  Solves performance 
degradation in residual 
networks under extreme 
depth conditions 

·         Verified on DRIVE 
dataset

·         Achieved high 
segmentation accuracy, 
sensitivity, and specificity

·         Verified on DRIVE 
dataset 

·         Results of the proposed 
method:

·         Segmentation accuracy 
96.50%

§  Sensitivity: 93.1% 

§  Specificity 98.63% 

·         Demonstrates high 
performance in retinal 
blood vessel segmentation 
in fundus images
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Zengqiang Yan, et al., 2019
A Three-Stage Deep 
Learning Model for Accurate 
Retinal Vessel Segmentation

·         Three-stage deep  
learning model for retinal 
vessel segmentation

·         Divided into three 
stages: 

1.       Thick vessel 
segmentation Thick 
Segmenter model 

2.                   Thin vessel 
segmentation Thin 
Segmenter model

3.                   Vessel fusion: 
Fusion Segmented model 
refines results identifies 
non- vessel pixels, improves 
thickness consistency

·         Outperforms current 
state-of-the- art vessel 
segmentation methods on 
public datasets

·         Evaluated on three 
public datasets DRIVE 
STARE and CHASE DB1 

·         Achieved better 
performance than state-of-
the-art methods 

·         Improved 
s e n s i t i v i t y s p e c i f i c i t y, 
accuracy, and AUC 

·         Demonstrated excellent 
generalization ability and 
robustness

·         Effective in cross-
training and challenging 
cases

·         Addressed retinal vessel 
segmentation problem by 
considering thick and thin 
vessels separately

Applications of AI in Detecting Abnormalities 
and Diseases in Ophthalmic Imaging

Manual segmentation of retinal vessels is an intricate process 
known for demanding both knowledge and finesse from medical 
professionals who engage with it daily. While these experts possess 
considerable expertise on the matter along with years of experience 
under their belt; nevertheless; complications arise due to potential 
human errors that cause inaccuracies during manual processing 
consistently-Adding significance towards automating solutions 
for retinal vessel segmentation within healthcare circles recently 
accomplished by researching groups applying machine learning 
towards resolving inconsistencies caused by human error during 
manual processing with cutting-edge technology that improves ac-
curacy significantly being developed as we speak.

By employing a semi-supervised clustering method, the re-
searchers were able to identify similar instances from various da-
tabases, enabling the algorithm to effectively train on both labelled 
and unlabelled data. To their delight, they found that images from 
different classes contributed to better performance compared to 
those from the same class. The trained network was then tested on 
three different datasets, DRIVE, STARE, and HRF, and achieved an 
accuracy rate of 97%, surpassing manual segmentation by human 
raters. Upon conducting cross validation tests, it became evident 
that the trained network maintained a high level of accuracy at a 
rate between 80% to 83%. The application of machine learning 
methods for retinal vessel segmentation presents significant op-
portunities for transforming diagnosis within medicine. A more ef-
ficient and reliable tool that reduces the likelihood of human error 
can be achieved.

The proposed framework’s remarkable accuracy rate and abil-
ity to utilize both labelled and unlabelled data make it a promising 

solution for retinal vessel segmentation in the medical realm [13]. 
In their research, Theodoros Pissas, et al., [14] delve into the intri-
cacies of retinal blood vessel segmentation in Optical Coherence 
Tomography Angiography (OCT-A) images of the human retina, 
with the goal of enhancing image-guided therapy administration 
during vitreoretinal surgery. The authors underscore the distinct 
advantages of OCT-A scans, as they offer a high-resolution perspec-
tive of the macular blood vessels, an essential element for achieving 
favourable surgical results.

The authors present a novel method to segment the Superficial 
Vascular Plexus using Convolutional Neural Networks (CNNs) in 2D 
Maximum Intensity Projections (MIP) of OCT-A images. The CNNs 
are designed to iteratively improve the quality of vessel segmenta-
tions, and the method is evaluated using a sample of 50 subjects, 
including those with structural macular abnormalities and healthy 
individuals.

The results reveal that the proposed approach outperforms 
other network- and graph-based methods and demonstrates its 
generalizability to three-dimensional segmentation and OCT-A 
scans with narrower fields of view. In conclusion, the authors em-
phasize the importance of precise and automated extraction of de-
tailed vessel maps in retinal surgery and how their method paves 
the way for the development of more advanced techniques for guid-
ing regenerative therapy delivery.

The authors’ work highlights the significance of utilizing ad-
vanced computational techniques to optimize surgical planning 
and improve patient outcomes in retinal surgery. The research by 
Hyeongsuk Ryu, et al., [15] introduces a novel era of medical image 
analysis, owing to their pioneering Direct Net architecture. This 
structure harnesses the power of deep learning to precisely detect 
retinal vessels, surpassing patch based CNNs with its exceptional 
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results. The Direct Net consists of blocks arranged in a pyramidal 
fashion, each comprising a series of convolutional layers that pro-
cess and combine data as they ascend. This recurrent configuration 
and the use of a large kernel eliminate the need for up- or down 
sampling layers, resulting in a direct mapping of pixel inputs to seg-
mentation outputs.

The performance of the Direct Net is remarkable, with accura-
cy scores reaching 0.9538, outperforming the patch-based CNN’s 
score of 0.9327. Its sensitivity score of 0.7851 is superior to the 
patch-based approach’s score of 0.7346, and the specificity score of 
0.9782 is higher than the patch-based CNN’s score of 0.9730. The 
Direct Net also boasts a precision score of 0.8458, surpassing the 
patch-based CNN’s score of 0.7987. Besides its impressive perfor-
mance, the Direct Net architecture has significantly reduced train-
ing and testing times. The training time has been shortened from 8 
hours to merely 1 hour on a standard dataset, while the testing time 
per image has been reduced from 1 hour for the patch-based meth-
od to a mere 6 seconds for the Direct Net. These improvements 
make this architecture a valuable resource for medical profession-
als handling large volumes of data who require rapid and accurate 
results.

In conclusion, the Direct Net architecture by Hyeongsuk Ryu, et 
al., [15] represents a groundbreaking accomplishment in the realm 
of medical image analysis, with its recurrent structure, large kernel, 
and direct mapping capabilities yielding improved accuracy, sensi-
tivity, specificity, and precision. The reduction in training and test-
ing times renders it an attractive option for medical professionals 
working with extensive amounts of data.

Exploring Other Imaging Modalities in 
Ophthalmic Imaging

In the domain of medical imaging, Pavle Prentasic, et al., [16] 
investigated blood vessel segmentation utilizing deep learning 
networks. They applied Convolutional Neural Networks (CNNs) to 
distinguish between vessels and non-vessels in Optical Coherence 
Tomography Angiography (OCT-A) images. The CNNs were com-
posed of a combination of convolutional and max pooling layers 
that transformed raw pixel intensities into feature vectors, which 
were subsequently classified by fully connected layers.

In their groundbreaking research, Pavle Prentasic, et al., [16] 
and their innovative team sought to evaluate the effectiveness of 
deep learning algorithms in segmenting foveal microvasculature 
within OCT-A images. By employing deep convolutional neural net-
works, they managed to achieve automated segmentation, classify-
ing each pixel as either vessel or non-vessel.

The researchers trained the neural networks using a balanced 
set of original OCT-A images and their corresponding manual seg-
mentations, ensuring an equal distribution of vessel and non-vessel 
pixels in each instance. Cross-validation test results demonstrated 
promise, as the trained network achieved accuracy percentages 
between 80% and 83%, on par with the accuracy of manual seg-

mentation performed by human raters. However, the study also 
highlighted significant variability in manual segmentation, both in-
tra- and inter-rater, indicating that the trained network might even 
surpass the performance of a newly trained human rater.

The automated segmentation process took a mere 2 minutes, in 
stark contrast to the 20 to 25 minutes required for manual segmen-
tation by human raters. This remarkable speed offers a valuable 
tool with the potential to expedite medical image analysis in clini-
cal settings and deliver faster results to healthcare professionals. In 
summary, this study emphasizes the vast potential of deep learning 
networks in transforming medical image analysis procedures and 
facilitating more efficient outcomes.

Classification Methods
Deep learning algorithms have gained immense attention in 

the world of ophthalmic imaging, showcasing their ability to delve 
into eye images and reveal previously unattainable insights. Most 
research in this area focuses on harnessing the power of basic Con-
volutional Neural Networks (CNNs) for analyzing Color Fundus Im-
aging (CFI) data.

The scope of deep learning algorithms in ophthalmic imaging 
is vast, encompassing tasks such as segmenting eye anatomy, de-
tecting retinal abnormalities, diagnosing eye diseases, and even as-
sessing image quality. A key demonstration of the impact of these 
algorithms can be seen in the 2015 Kaggle competition, where over 
35,000 colour fundus images were utilized to train deep learning 
models to estimate diabetic retinopathy severity in a set of 53,000 
test images.

Numerous participating teams employed deep learning algo-
rithms, with four of them even surpassing human experts by using 
end-to-end CNNs. In another study by Gulshan, et al., [17], the per-
formance of a Google Inception v3 network in identifying diabetic 
retinopathy was found to be on par with a group of seven certified 
ophthalmologists. These findings underscore the tremendous po-
tential of deep learning algorithms in delivering faster, more effi-
cient, and precise results in ophthalmic imaging.

The realm of retinal vessel segmentation in colour fundus, Flu-
orescein Angiography (FA), and Scanning Laser Ophthalmoscopy 
(SLO) images has undergone a significant transformation due to in-
novative techniques. This overview delves into the recent advance-
ments in the field, emphasizing both supervised and unsupervised 
machine learning approaches. However, to provide a comprehen-
sive understanding, it also covers the latest non-machine learning 
techniques, which are organized into four categories: morphologi-
cal image processing, vessel tracing/tracking, multi-scale, and oth-
er methods [18].

Morphological image processing uses mathematical morpho-
logical operations to process images and isolate features. Tech-
niques like morphological gradient extract vessel-like structures by 
removing background pixels. Vessel tracing/tracking follows vessel 
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paths to trace retinal vessels, with accurate tracing and avoiding 
false detections as key challenges.

The multi-scale category processes images and extracts fea-
tures at multiple scales, crucial for retinal vessel segmentation, 
where vessels have varying sizes and shapes. A single scale makes 
accurate segmentation difficult. The “other methods” category 
covers techniques that don’t fit the previous categories, including 
phase-based, deep learning-based, and region-growing methods. 
These techniques are also discussed in-depth, emphasizing key fea-
tures and performance.

In conclusion, this comprehensive overview presents a detailed 
look at recent advances in retinal vessel segmentation, centred on 
various techniques and their performance. An appendix table sum-
marizing each paper makes comparing and evaluating different 
techniques easier.

Machine Learning Methods
When it comes to machine learning techniques one can classify 

them into two categories based on their approach: supervised or 
unsupervised techniques. The former includes Bayesian approach-
es, SVMs, ANNs, random forest algorithms, AdaBoost decision trees 
along with deep learning systems that rely on ground truth labels 
for training classification models. These methods are generally 
more accurate, but their success depends heavily on the quality 
and quantity of labelled datasets [19,20]. Unsupervised methods 
such as GMMs, FCMs or k means clustering approach data analysis 
without relying on training labels thus enabling them to reveal hid-
den patterns which may otherwise be missed by supervised meth-
odologies. Nevertheless, they may not be as precise as supervised 
techniques resulting in lower accuracy rates. Therefore, it is crucial 
for researchers to focus both on the application requirements along 
with labelling availability before deciding which approach would 
best suit their project.

Deep Learning
Deep learning models, especially CNNs, excel at classification 

and categorization tasks. They have been used for vessel segmenta-
tion, either independently or combined with other techniques like 
random forests [12]. Other approaches include using CNNs with 
CRFs [21]. Modified architectures with specialized layers have been 
proposed for combined vessel-optic disk detection [22], and CRF 
layers have improved lesion segmentation [23]. Dense CRFs models 
shorten training time [24]. Dasgupta and Singh (2017) segmented 
thin vessels, while FCNs showed better results than networks with 

few fully connected layers [25]. Multi-scale analysis and GANs have 
also been explored to improve segmentation performance [25,26]. 
Overall, deep learning techniques continue to advance vessel seg-
mentation processes.

Other Machine Learning Methods
Supervised Methods

Backpropagation NNs are popular in retinal vessel segmenta-
tion, with various strategies to improve performance, such as incor-
porating texture [27], colour [28], intensity [29,30], and moment 
invariants [29]. Lattice NNs have been used to enhance conver-
gence [29]. Cross-modality learning, and deep architectures have 
also been applied for segmenting vessels in noisy images [31]. Thin 
vessels have been segmented using feature descriptors like LBP 
and shape features [31].

Combining NNs with LDA involves integrating Gaussian, Wave-
let, and Gabor filters with intensity, Hessian-based, and SIFT fea-
tures for vessel enhancement and segmentation [32-34]. Annunzi-
ata and Trucco [35] presented an approach using SCIRD-TS filters 
for segmenting thin vessels. Ensemble learning algorithms like bag-
ging and boosting have shown effectiveness in vessel segmentation 
[19,30,36,37], particularly the AdaBoost algorithm in capturing 
vessel information from normal and pathological pediatric retinal 
images [30].

Fuzzy inference combined with multi-scale LBP, Gaussian, 
and directional features has been used for vessel segmentation 
[38,39]. Dictionary learning and sparse representations have also 
shown improvements in vessel classifiably [40]. Techniques such 
as B-COSFIRE and Frangi filters have been used to enhance vessels 
[36], while ensemble features with divergence vector field have 
boosted pathological image performance [41,42].

SVM, when combined with fully connected conditional ran-
dom fields, has improved segmentation results in computer vision 
tasks [43,44]. SVM has been used with k-means clustering, binary 
Hausdor symmetry measure, Gabor filters, B-COSFIRE filters, and 
multi-fractal features to achieve lesion-resistant vessel segmenta-
tion [45, 46-50]. Jebaseeli, et al., (2016). Random forest classifiers, 
combined with visual attention modelling, have been applied to 
address challenges in images with closely situated parallel vessels, 
CVR, low-contrast thin vessels, lesions, and non-uniform illumina-
tion [51,52]. These methods demonstrate the adaptability of SVM 
and its ability to tackle various segmentation challenges when com-
bined with other techniques (Table 2).
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Table 2:

Authors Year Title Methods Results

Nogol

Memari, et

al.,

2017

Supervised

retinal vessel

segmentation

from color

fundus images

based on

matched

filtering and

AdaBoost

classifier

·         Supervised approach 
for automatic segmentation 
of retinal blood vessels

·         AdaBoost classifier for 
strong

discriminative power

computational efficiency 
mRMR feature selection for

increased accuracy and 
decreased computational 
requirements

·         Combination of filters 
to improve

segmentation and 
accommodate

different image 
characteristics

·         Tested on publicly 
accessible

DRIVE, STARE, and CHASE_
DB1 datasets for

performance validation

·         Validated using public 
DRIVE, STARE, and CHASE_
DB1 datasets

·         Comparable accuracy to 
stat of the - art methods

·         Close to manual 
segmentation by

second human observer

·         Average accuracy:

• 0.972 in DRIVE dataset

• 0.951 in STARE dataset

• 0.948 in CHASE_DB1 
dataset

Nicola

Strisciuglio,

et al.,

2016

Supervised

vessel

delineation in

retinal fundus

images with the

automatic

selection of B

COSFIRE filters

·         Delineation of blood 
vessels in

retinal images using B- 
COSFIRE filters

·         Filters selective for 
vessels and vessel-endings

·         Automatic filter 
selection

adaptable to different 
applications

·         Comparison of selection 
methods based on machine 
leaming and information 
theory

·         Tested on public 
benchmark

datasets DRIVE and STARE

·         B - COSFIRE filters 
selective for vessels of 
different thickness

·         Comparison of various 
feature

selection techniques applied 
to a bank of B - COSFIRE 
filters

·         Tested on public 
benchmark datasets DRIVE 
and STARE

·         Outperformed many 
existing methods

·         Improved sensitivity 
for both datasets at the same 
specificity levels

·         Significant improvement 
with feature selection 
method based on GMLVQ 
and relevance peaks

·         Genetic algorithm 
approach also showed 
significant improvement

·         Best performance results 
achieved with GMLVQ and 
genetic algorithm methods 
for both datasets



Am J Biomed Sci & Res

American Journal of Biomedical Science & Research

Copyright© Adamopoulou M

631

Syed Ayaz

Ali Shah, et

al.,

2017

Blood vessel

segmentation in

color fundus

images based on

regional and

Hessian feature

·         New algorithm for 
blood vessel segmentation 
in color fundus images

·         Based on regional and 
Hessian features

·         Four main steps:

1.       Image preprocessing:

conversion to grayscale,

contrast enhancement

2.       Feature extraction: 
regional statistical features, 
Hessian features from 
multiple scales

3.       Pixel classification: 
linear

squared error (LMSE) 
classifier for vessel/non-
vessel pixels

4.       Post-processing: 
removal of minimum 
false positives, specificity 
improvement Evaluated 
using public

DRIVE dataset

·         High accuracy and 
sensitivity in detecting 
blood vessels

·         Evaluated using DRIVE 
dataset

with 40 color fundus images

·         Average sensitivity: 
72.05%

·         Average accuracy: 
94.79%

·         Average false positive 
rate (FPR):

1.86%

·         Average Matthews 
correlation.

coefficient (MCC): 0.75

·         Best MCC value among 
all works,

second only to human 
observer

·         High accuracy in 
detecting blood vessels 
in peripapillary region 
(important for diagnosing 
ocular conditions)

Unsupervised Methods

Unsupervised vessel segmentation in medical imaging uses 
mathematical algorithms to classify pixels as vessels or non-vessels 
without human involvement. The Gaussian Mixture Model-Expec-
tation Maximization (GMM-EM) is a popular algorithm for maxi-
mum-likelihood vessel/non-vessel classification, enhancing vessels 
through high-pass filtering and top-hat transformation [53]. GMM-
Gray voting has also improved thin vessel detection and reduced 
vessel fragmentation Dai, et al., (2015). Fuzzy C-Means (FCM) clus-
tering amplifies thin vessels and removes blobs from fundus imag-
es using filters like Frangi’s, Matched, and Gabor wavelets [54,55]. 
Evolutionary algorithms, such as Bee Colony Optimization, have 
been used to identify vessel clusters and distinguish vessels from 
background pixels [56,57]. Overall, unsupervised vessel segmenta-
tion techniques offer improved results and do not rely on human 
input, providing enhanced outcomes in medical image analysis.

Matched Filtering Methods

The Matched Filtering (MF) method is an established technique 
in image processing that compares retinal images with pre-designed 
kernel models, imitating the intensity profiles of vessels [58-61]. To 
improve visibility of slender, low-contrast vessels in images with le-
sions and bright blobs, various strategies have been employed, such 
as curvelet transform, Laplacian of Gaussian filter [62-64], two-di-

mensional Gabor filtering, multi-scale line detection, anisotropic 
diffusion, and B-COSFIRE filtering [60,61,65,66]. Support Vector 
Machines (SVM) can be used for segmentation by merging contrast 
and diffusion maps [65]. Spline fitting, length, and adaptive filtering 
can help refine segmented vessels and minimize artifacts [61,67]. 
Parameter adjustments for Gabor filters can be done using opti-
mization algorithms like Particle Swarm Optimization (PSO) and 
Imperialism Competitive Algorithm (ICA) [59,68,69]. Additionally, 
MF has been studied within portable FPGA-based hardware archi-
tectures [70,71]. In summary, numerous techniques are available to 
enhance and distinguish slender, low-contrast vessels in challeng-
ing images, and ongoing advancements in image processing prom-
ise new, more effective methods.

Morphological Image Processing Methods

Mathematical morphology is a potent technique in digital im-
age processing, crucial for identifying boundaries, skeletons, and 
convex hulls [72]. Gonzalez and Woods (1988). In this field, mor-
phological operators are used to carry out a variety of tasks on bi-
nary images, including connecting disjointed regions, filling gaps, 
and shrinking objects, with dilation and erosion being the most 
commonly used operators Serra, et al., (1979).

A primary application of mathematical morphology in digital 
image processing involves improving vessel visibility, often using 
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the top-hat transformation to estimate image background through 
morphological opening operations [19,73]. Vessel enhancement 
in images can be accomplished through methods such as bit plane 
slicing, multi-directional morphological top-hat transform, and the 
H-maxima transform [74].

Mathematical morphology in digital image processing offers 
several advantages over alternative techniques. Morphological op-
erators are non-linear and non-iterative, rendering them ideal for 
real-time applications due to their computational efficiency. Fur-
thermore, morphological operators facilitate the preservation of 
geometrical information in the image, making them invaluable in 
applications where geometrical details are essential.

In summary, mathematical morphology is a foundational aspect 
of digital image processing, with a wide range of applications, from 
vessel enhancement to the detection of boundaries, skeletons, and 
convex hulls. The non-linear and non-iterative nature of morpho-
logical operators renders them a computationally efficient solution, 
well-suited for real-time applications. As computational power and 
image processing algorithms continue to advance, the utilization of 
mathematical morphology in digital image processing is expected 
to grow significantly.

The complex field of vessel centerline segmentation, a crucial 
topic within the medical imaging domain, has been the subject of 
extensive investigation and development. A notable milestone in-
cludes [75] innovative method, which combined FoDoG (First Order 
Derivative of Gaussian) and iterative region growing to identify ves-
sel centerlines, culminating in a binary map via multilevel thresh-
olding [75]. The efficacy of separating vasculature and pathological 
lesions using the Morlet Wavelet Transform (MWT) and Morpho-
logical Component Analysis (MCA) has also been demonstrated 
[76].

A combination of different techniques, including FoDoG, adap-
tive thresholding, and morphology-based global thresholding, 
has been employed to accurately detect thin vessels [76,77]. In 
the presence of occlusions, the Hidden Markov Model (HMM) has 
demonstrated its effectiveness in tracking vessels and segmenting 
both thin and thick vessels [78]. By using mean-C thresholding and 
morphological cleaning, Dash and Bhoi [79] have improved seg-
mentation accuracy by eliminating disconnected areas. 

In conclusion, vessel centerline segmentation remains an ac-
tive area of research, with numerous methods being developed to 
achieve precision in identifying vessel centerlines and differentiat-
ing them from pathological lesions. The integration of various tech-
niques and the use of models like HMM have proven invaluable in 
ensuring accuracy, even in the presence of occlusions.

Vessel Tracing and Tracking Methods

The complexities of vessel tracing and tracking require the 
use of seed points, chosen from the borders or centerlines of the 
vessels, as a starting point. These seed points, based on local data, 
provide insights into vessel dimensions and the intricacies of their 

interconnectivity at complex crossover points and bifurcations. The 
intersection and crossing of vessels can be determined through a 
combination of particle filtering, Kalman filtering, and hysteresis 
thresholding [80,81].

A multi-scale, multi-orientation filtering approach, known as 
MF, has been employed to construct maps of vesselness, enhanc-
ing the visual representation of vessels [82,83]. Techniques such 
as minimum-cost matching, Dijkstra’s algorithm, and global graph 
optimization help maintain the continuity and connectedness of 
traced vessels. These methods have proven successful in segment-
ing low-contrast, tortuous vessels found in retinal photographs of 
premature infants [80,81,84].

The intricate task of distinguishing vessel segments as arteries 
or veins is adeptly managed by combining snakes, gradient orien-
tations, and minimum pathways through the implementation of 
k-means clustering Vázquez, et al., (2013). Utilizing line and orien-
tation detection across multiple scales assists in tracing vessel edg-
es and centrelines in complex regions near vessel crossovers and 
bifurcations [85].

To amplify the visibility of fragile vessel segments, researchers 
have integrated the Firangi filter response [86,87] into their ap-
proach. This filter enhances thin and elongated structures in imag-
es, making it well-suited for vessel segmentation. Otsu’s threshold-
ing and tensor colouring were used to complement this technique, 
producing binary maps of the targeted vessels [87].

These inventive methods have demonstrated their worth in 
examining and visualizing retinal vessels, with precise tracking of 
edges and centrelines being essential for diagnosing and treating 
eye conditions such as diabetic retinopathy, age-related macular 
degeneration, and glaucoma. Employing k-means clustering, gra-
dient orientations, and minimum pathways facilitates the identifi-
cation of vessel segments as arteries or veins, a critical step in ad-
dressing these diseases.

In conclusion, the accurate classification of vessel segments 
as arteries or veins, along with precise tracking of edges and cen-
trelines, is essential for effective retinal vessel analysis. The com-
bination of snakes, gradient orientations, minimum pathways, and 
k-means clustering provides a robust solution for these challenges. 
The Frangi filter response, Otsu’s thresholding, and tensor colour-
ing are instrumental in enhancing the visualization of thin vessel 
segments that are often difficult to detect. These techniques have 
proven their efficacy in the diagnosis and treatment of eye diseases 
and will continue to be pivotal in retinal vessel analysis.

Artery/Vein Classification Methods

During the period examined, the number of research papers 
specifically targeting arteriole and venule (A/V) classification is 
significantly less than those focusing on vessel segmentation. Tradi-
tional Convolutional Neural Networks (CNNs) have been employed 
for the classification of arteries and veins, exhibiting success in 
segmenting delicate vessels even when occlusions are present [88]. 
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Probability graph propagation has shown effectiveness in correct-
ing misclassified pixels [89,90].

Furthermore, Fully Convolutional Network (FCN) segmentation 
of arteries and veins using the U-Net architecture has been docu-
mented [91,92]. Generative Adversarial Networks (GANs) with to-
pological structure constraints and adversarial loss have displayed 
greater efficiency in learning the probability distribution of arterio-
venous segmentation maps compared to other methods [93].

In the context of vessel classification and Arteriole-to-Venule 
Ratio (AVR) estimation, Linear Discriminant Analysis (LDA) has 
been applied alongside intensity, retinex normalization, and reflec-
tion properties of the vessels [94-96]. The AVR is a well-regarded 
metric in retinal biomarker research [91] and represents the ratio 
of the weighted average width of arterioles to that of venules in the 
area around the optic disc.

Bayes classifiers and graph cut techniques have been used by 
Pellegrini, et al., [97] to analyze Ultra-Wide Field of View (UWFoV) 
Scanning Laser Ophthalmoscopy (SLO) images. This highlights the 
diverse range of methodologies and techniques researchers have 
employed to investigate and improve upon A/V classification and 
vessel segmentation in retinal imaging.

The advancements in deep learning and various machine 
learning techniques have paved the way for more sophisticated ap-
proaches to A/V classification and vessel segmentation. These in-
novative methods are instrumental in enhancing the accuracy and 
efficiency of retinal image analysis, ultimately leading to improved 
diagnosis and treatment of retinal diseases. The continuous explo-
ration and development of these techniques contribute to a better 
understanding of retinal biomarkers, ensuring more reliable and 
precise results in retinal biomarker research.

The classification of blood vessels in retinal images has been 
explored using a range of classification and clustering techniques 
that leverage various features. Support Vector Machines (SVM) 
have been employed by numerous researchers [98-100] Vijayaku-
mar, et al., (2016) to analyze width, orientation, Gabor, intensity, 
and morphological features, as well as to execute feature selection 
through Random Forest (RF) and graph-theoretic frameworks with 
vessel tree network topology Estrada, et al., [101].

K-Nearest Neighbors (KNN) has been assessed using multi-
scale, colour, texture, and adaptive Local Binary Pattern (LBP) fea-
tures by various investigators [41,102-104]. Additionally, k-means 
clustering with color features has been applied to classify arteries 
and veins within specific sections of fundus images. To compute the 
Arteriole-to-Venule Ratio (AVR), Fu, et al., [105] and Relan, et al., 
[106,107] have used these methods.

A more advanced approach involved Joint Boost, which utiliz-
es vessel network topology Yan S, et al., [108]. Vessel tracing and 
optimal forest graph representations have been integrated into the 
widely recognized Singapore I Vessel Assessment (SIVA) system, 
which has been used in numerous clinical studies [109].

Furthermore, Eppenhof, et al., [110] have examined energy 
functions based on Markov Random Fields (MRFs), RF classifiers 
with Gabor wavelet and statistical histogram features, vessel key 
point detection, and metaheuristic graph search techniques. This 
approach has been further investigated by Srinidhi, et al., [111].

In summary, a variety of methods have been investigated in the 
context of retinal vessel classification, including deep learning, su-
pervised and unsupervised techniques, vessel tracing and tracking, 
and multi-scale approaches. These diverse methodologies reflect 
the ongoing efforts of researchers to develop more accurate, effi-
cient, and robust techniques for vessel classification in retinal im-
ages. As the field continues to evolve, the incorporation of advanced 
machine learning algorithms and feature extraction techniques 
promises to enhance the accuracy and reliability of retinal vessel 
classification, ultimately leading to improved diagnostic capabili-
ties and more effective treatments for retinal diseases.

The detection and diagnosis of retinal diseases present signif-
icant challenges for medical practitioners, as these conditions can 
be severe, and results from image processing techniques may be 
inconsistent. To address this issue, a novel approach has been pro-
posed that combines various stages for improved accuracy.

The initial phase, pre-processing, focuses on cleaning the im-
ages of noise and enhancing their quality, followed by defining a 
Region of Interest (ROI) to extract specific attributes and segmenta-
tion. Subsequently, a Deep Convolutional Neural Network (DCNN) 
is combined with other techniques like HOG, LBP, and SURF to ex-
tract features from the ROI, including textural properties, contrast, 
scaling, rotation, and translation [112].

A feature selection process is then executed to eliminate unim-
portant features and choose the most representative ones, which 
are then inputted into multi-class classifiers such as SVM, KNN, and 
RF for classification into either diseased or healthy classes. The 
proposed system leverages the power of deep learning to provide a 
more precise and trustworthy method for retinal disease detection. 

In summary, the proposed methodology incorporates multiple 
stages of image processing and feature extraction to achieve a more 
accurate diagnosis. The integration of deep learning and various 
techniques promises to enhance the reliability and precision of ret-
inal disease detection (Table 3).
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Table 3:

Authors Year Title Methods Results

Ruben

Hemelings,

et al.,

2019

Artery - vein

segmentation in

fundus images

using a fully

convolutional

network

·         Using fully convolutional 
network (FCN) based on U – 
Net architecture

·         Artery-vein 
segmentation in fundus 
images

·         RGB input four - class 
segmentation map output

·         Trained on DRIVE and 
HRF datasets

·         Data augmentation 
techniques: random 
cropping , rotation , elastic 
deformation

·         Modified U - Net for 
three – class segmentation , 
added dropout layers

·         Performance valuation 
with accuracy and F1 score 
metrics Ablation study to 
assess impact of various 
factors on performance

·         High accuracy achieved 
with FCN based on U – Net 
architecture

·         Vessel segmentation 
accuracy of 96.75%

·         A/V discrimination 
accuracy of 94.25% in 
evaluation zone 3 on DRIVE 
dataset

·         Performance accuracy 
and F1 score metrics 
Ablation study conducted to 
assess performance factors

·         Background 
subtraction found to have 
significant positive effect on 
performance

Fan Huang,

et al.,
2017

Artery / vein

classification

using reflection

features in retina

fundus images

·         New normalization 
technique for extracting four 
lightness reflection features

·         Automatic artery / vein 
(A / V)

classification in retinal 
images

·         Accuracy validation 
with linear discriminate 
analysis classifier

·         Importing color fundus 
image and applying vessel 
segmentation

·         Extracting multiple 
features from various color 
channels

·         Supervised A / V 
classification

·         Determining vessel

centerline / segment label 
by

averaging pixel labels

·         Correcting segment 
– wise classification using 
contextual

information

·         Validation on three 
datasets, with traditional 
comparison nomalized color 
intensities

·         Proposed reflection 
features outperform 
traditional luminosity 
normalization method

·         Tested on three 
datasets, achieving accuracy 
rates of 85.1% , 86.9% , and 
90.6%

·         Expected superior 
performance when 
combined with advanced 
graph-based methods

·         Combination of 
proposed reflection features 
and traditional normalized 
intensities yields better 
classification than using 
each alone
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Fantin

Girard, et

al.,

2019

Joint

Segmentation

and

Classification of

Retinal

Arteries / Veins

from Fundus

Images

·         Fast, novel method for 
semantic artery / vein (A / 
V) segmentation

·         Combines deep leaming 
and graph propagation

·         Initial classification 
using

convolutional neural 
network

(CNN)

·         Propagation of CNN 
labeling

output through vascular 
network with graph 
representation

·         Fast inference time and 
original training strategies

·         Six - channel image 
representation, realistic PCA 
augmentation , and

training patch selection near 
vessels

·         Efficient CNN labeling

propagation scheme

·         Proposed global arterio 
- venous ratio (AVR) for 
whole fundus image

·         Better tracking of vessel 
changes associated with 
diabetic retinopathy than 
standard local

AVR

·         Achieved 94.8% accuracy 
for vessel segmentation

·         Outperformed leading 
previous works on public 
dataset for A / V

classification 

·         Specificity of 92.9% 
and sensitivity of 93.7% on 
CT - DRIVE database

·         Outperformed state - 
of - the – art specificity and 
sensitivity (both 91.7%)

·         Proposed global AVR 
better tracks vessel changes 
associated with diabetic 
retinopathy than standard 
local AVR

Rabbia

Mahum, et

al.,

2021

A Novel Hybrid

Approach Based

on Deep CNN to

Detect Glaucoma

Using Fundus

Imaging

·         Detect early - stage 
glaucoma using deep feature 
learning – based extraction

·         Retinal fundus images 
for training and testingPre 
- processing of images and 
ROI extraction through 
segmentation

·         Optic disc (OD) feature 
extraction using hybrid 
descriptors:

• Convolutional neural 
network

• (CNN)

• Local binary patterns 
(LBP)

• Histogram oriented of

• gradients (HOG)

• Speeded up robust 
features

(SURF)

·         Proposed model based 
on RF algorithm with HOG , 
CNN , LBP , and SURF feature 
descriptors

·         Provided ≤99% 
on accuracy benchmark 
datasets

·         98.8% accuracy on k 
- fold cross validation for 
early detection of glaucoma

·         Evaluated on 40% 
testing dataset (1500 
Fundus Images)

·         K - fold cross - 
validation for k = {1, 2 ,3, 4, 
5) performed using DRISHTI 
GS and RIM - ONE datasets

·         Obtained 99% accuracy 
on testing images and 98.8% 
accuracy on cross validation
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·         Low - level features 
with HOG. texture features 
with LBP and SURF, high - 
level features with CNN

·         Feature selection and 
ranking using MR - MR 
method

·                     Multi - class 
classifiers for classification:

• Support vector 
machine

• (SVM)

• Random forest (RF)

• K - nearest neighbor 
(KNN)

Devanjali

Relan, et al.,
2019

Using

Orthogonal

Locality

Preserving

Projections to

Find Dominant

Features for

Classifying

Retinal Blood

Vessels

·         Pre - processing 
fundus camera images for 
brightness and contrast 
compensation

·         Detecting vessel 
centerline pixels

·         Feature extraction by 
sampling inside vessels in 
pre - processed

channels

·         Orthogonal Locality 
Preserving Projections 
(OLPP) for dominant feature 
extraction

·         Unsupervised 
classification using Gaussian 
Mixture Model with 
Expectation -Maximization 
(GMM - EM)

·         Vessels assigned final 
status based on maximum 
polling of centerline pixel 
labels

·         Performance evaluation 
using

various performance 
measures

·         Proposed method was 
evaluated on two datasets : 
ORCADES and DRIVE

·         Classification rate and 
performance of proposed 
method were consistent 
regardless of feature set 
dimension used

·         Mean classification rates 
were similar for smaller (9-
15 features) and larger

(32-47 features) dimensions

·         Performance measures 
for arterioles and venules 
using OLPP with 12 feature 
set for observer 1 on 
ORCADES dataset

Comparative Results
From the presentation thus far, it becomes evident that drawing 

fair and consistent comparisons between the multitude of reported 
methods is far from a straightforward task. This section delves into 
the primary concerns surrounding this issue and provides sugges-
tions on how to navigate these challenges. A crucial aspect of the 
broader field of medical image validation is the availability, design, 
and objectives of public datasets, which has been acknowledged 
as a critical component sparking substantial international discus-
sions [113-116]. This debate encompasses a variety of internation-

al grand challenges that are characterized by well-established, yet 
often contrasting, performance metrics.

In this section, the authors examine two instances of retinal 
image analysis, although their primary focus is not on vessel de-
tection and labelling. The first instance involves REFUGE at MIC-
CAI, which is linked to the OMIA workshop on retinal image anal-
ysis that occurred on March 13th. REFUGE 2018 accumulated a set 
of 1,200 images, with 400 allocated for training purposes. These 
images were annotated by seven independent specialists in optic 
disc detection, glaucoma classification, and fovea localization. The 
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second instance is the IDRID (Indian DR Image Dataset) challenge, 
conducted during ISBI 2018 (https://idrid.grand-challenge.org/). 
This challenge emphasizes DR identification and classification, as 
well as diabetic macular enema. Numerous other comparable chal-
lenges can be readily found online.

Based on a quantitative evaluation of the results from recent 
MICCAI Grand Challenges, Maier Hein, et al., [113] offer fascinating 
insights and observations. These grand challenges play a crucial 
role in progressing the field of medical image analysis by uniting 
researchers and experts from across the globe. They establish a 
platform for the creation and comparison of innovative techniques 
and algorithms, promoting collaboration and inventiveness. The 
shared datasets, evaluation metrics, and best practices contribute 
to advancements in medical imaging technology, ultimately benefit-
ing both medical professionals and patients.

One key factor contributing to the difficulty in comparing dif-
ferent methods is the wide range of datasets and evaluation crite-
ria used in these challenges. The quality and representativeness of 
the datasets play a significant role in determining the robustness 
and generalizability of the developed methods. Furthermore, the 
evaluation criteria must be carefully designed to ensure that they 
measure the performance of the methods in a fair and meaningful 
way. This may involve considering factors such as the complexity 
of the images, the presence of various confounding factors, and the 
specific clinical applications of the developed techniques.

Another challenge in comparing the methods is the often-pro-
prietary nature of some datasets and algorithms, which can hinder 
the transparency and reproducibility of the results. This under-
scores the importance of open science practices, including the shar-
ing of datasets, code, and detailed methodological descriptions, to 
enable a more rigorous and fair comparison of the different meth-
ods.

In conclusion, the complexity of comparing the numerous 
methods reported in the field of medical image validation high-
lights the need for a more systematic and standardized approach. 
By addressing the challenges related to the availability, design, and 
purpose of public datasets, as well as the evaluation criteria used in 
international grand challenges, the research community can con-
tinue to make progress and drive advancements in medical imaging 
technology.

The majority of techniques documented for segmenting retinal 
vessels have been evaluated using the DRIVE database. Addition-
al assessments have been carried out on databases such as STARE 
[117] CHASEDB1 [118], and HRF [119]. Moreover, numerous meth-
ods have been examined on other datasets, comprising both pub-
licly accessible and proprietary resources. Examples of these sup-
plementary datasets include DIARETDB1 [120] MESSIDOR [121], 
ARIA [122], REVIEW [123], GoDARTS (Genetics of Diabetes in Tay-
side Scotland: An Audit and Research), IOSTAR [124,125], and RC-
SLO.

Various techniques for classifying arteries and veins have been 
evaluated using VICAVR Vázquez, et al., (2013), INSPIREAVR [126], 
and WIDE [127]. Several databases, such as STARE, ARIA (Auto-
mated Retinal Image Analyzer), HRF, VAMPIRE, INSPIRE-AVR, and 
WIDE, incorporate images with pathological features like Diabetic 
Retinopathy (DR), Age-related Macular Degeneration (AMD), and 
glaucoma. This inclusion of images with lesions enables the test-
ing of vessel detection methods’ robustness against potential con-
founding factors. In addition, databases like IOSTAR and RC-SLO 
tackle segmentation challenges related to Central Venous Refilling 
(CVR), fine vessels, and complex bifurcation or crossover points. 
Lastly, there are a handful of other datasets that are quite limited in 
size and therefore seldom employed in these evaluations.

In summary, a wide range of methods for retinal vessel seg-
mentation have been analyzed using numerous databases, such 
as DRIVE, STARE, CHASEDB1, and HRF. Additional datasets have 
also been utilized, including public and proprietary ones like DI-
ARETDB1, MESSIDOR, ARIA, REVIEW, GoDARTS, IOSTAR, and RC-
SLO. Artery and vein classification techniques have been evaluated 
through databases like VICAVR, INSPIREAVR, and WIDE. Moreover, 
these databases feature images with lesions, enabling robustness 
tests for vessel detection against confounding factors. Other data-
bases, such as IOSTAR and RC-SLO, address specific segmentation 
issues related to CVR, thin vessels, and bifurcations or crossover 
points. However, a few datasets are quite small and rarely employed 
in these studies.

The scarcity of research into arterial and venular (A/V) divi-
sion’s complexities, in comparison to the more widely examined 
domain of vessel segmentation, arises from multiple factors. A pri-
mary aspect is the importance of A/V labelling in statistical evalua-
tions that seek to uncover correlations between retinal phenotype 
and clinical outcomes, requiring separate analysis of arterial and 
venular networks, which makes A/V labelling essential. However, 
not all entities involved in vessel classification participate in such 
studies, leading to limited access to A/V ground truth labels, as 
datasets containing this information are sparse and less promi-
nent compared to vessel segmentation labels, which are easier to 
acquire and require only unlabelled vessel maps.

Deep diving into intricate medical images requires rigorous 
study of data sets displayed as blood vessels; however, parsing 
them becomes complicated when you include arterioles/venules 
(A/V). Though new players may overlook this section as it demands 
extra steps along with classifications; those relying on advanced 
deep learning solutions incorporating simultaneous segregation/
classification will find their tasks less cumbersome hence easier 
than ever before. With further innovation in this area & access be-
ing made easier to public datasets, we can expect to see more focus 
on A/V segmentation & classification in the future. To summarize, 
the discrepancy in the number of studies concentrating on A/V 
segmentation and vessel segmentation is due to the combined fac-
tors of restricted access to ground truth labels and the task’s added 
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complexity. Nonetheless, with the advent of deep learning systems, 
the outlook for A/V segmentation research appears promising.

The precision of retinal vessel segmentation techniques has 
been a widely discussed topic in the research community, with 
some speculating if the limits of accuracy on datasets such as DRIVE 
and STARE have been attained. However, a closer examination of 
accuracy histograms reveals that there is still considerable scope 
for enhancement. Despite a clustering of accuracy around 95-96%, 
the range of accuracy stretches from 92%to98%, indicating a dis-
parity in the accuracy achieved by various methods and, therefore, 
untapped potential for improvement.

The establishment of ground truth, the process of creating a 
reference standard for evaluating segmentation results, poses a sig-
nificant obstacle in accurately determining the precision of retinal 
vessel segmentation methods. The medical image analysis commu-
nity has not yet thoroughly tackled issues related to ground truth 
design, including annotator instructions, management of diverse 
annotations, the influence of ground truth design on specific ob-
jectives, the number of annotators, and evaluation criteria, among 
other concerns.

The DRIVE dataset exemplifies the difficulties connected to 
ground truth design. The creators of DRIVE split the 40 images into 
two subsets, with two manual annotators delineating the vascula-
ture in one set and only one annotator in the other. This situation 
prompts questions about the impact of the number of annotators 
on accuracy and whether improving accuracy simply equates to 
aligning more closely with one or two annotators. This issue re-
mains a subject of ongoing discussion within the medical image 
analysis community, as explored by Maier Hein, et al., [113] in their 
insightful article. In summary, although it may appear that the ac-
curacy of retinal vessel segmentation has reached its zenith, there 
remains room for improvement, and ground truth design persists 
as a formidable challenge in accurately evaluating retinal vessel 
segmentation methods’ results. Further research and discussion 
are necessary to fully comprehend and address these challenges.

Is it evident that Deep Learning (DL) excels over non-DL tech-
niques in a quantitative sense? The solution is not as straightfor-
ward as one might assume. Without a doubt, DL has made signif-
icant progress in various domains, such as speech processing and 
generation, automated captioning, facial and object identification, 
retinal patient prioritization, and cardiovascular disease risk as-
sessment [128]. At this juncture, it is reasonable to examine the ex-
tent of quantitative improvement in terms of performance bench-
marks for the specific tasks involved, such as retinal blood vessel 
segmentation and classification.

The researchers endeavored to conduct a quantitative evalua-
tion of the efficacy of both DL and non-DL approaches investigated 
for this objective. Nevertheless, this process is far from uncom-
plicated. To ensure a uniform evaluation, the focus was solely on 
methodologies assessed on DRIVE and STARE datasets, using ac-

curacy as the lone reference standard. Consequently, a set of 17 DL 
and 33 non-DL research papers for DRIVE, as well as 13 DL and 
25 non-DL papers for STARE, were analyzed during the time frame 
encompassed by this study.

This selection comprises 88 of the 158 papers incorporated 
into the review, signifying that uniformity is attained at the cost of 
comprehensiveness. In other words, to facilitate a fair comparison 
between DL and non-DL methods, the researchers had to narrow 
their focus to a specific set of papers, which limited the overall in-
clusiveness of their analysis. While deep learning has demonstrat-
ed undeniable advancements across various fields, determining its 
quantitative superiority over non-DL methods remains a complex 
task. The intricacies involved in conducting a fair and comprehen-
sive quantitative analysis make it difficult to provide a simple an-
swer to this question.

Histogram charts displaying the mean accuracy on DRIVE and 
STARE datasets were generated using a class-normalized distri-
bution. Many studies provide distinct accuracies for healthy and 
pathological images; for the analysis, the accuracy of healthy imag-
es was employed. The histograms obtained for STARE are depicted 
in one figure, while those for DRIVE are presented in another.

For the STARE dataset, the findings indicate that the majority of 
the examined DL techniques achieve considerably higher accuracy 
rates than most non-DL approaches, with DL methods attaining the 
highest overall accuracy (99% compared to 96%). Nevertheless, 
the situation with DRIVE is not as clear-cut. Unlike the STARE re-
sults, the DL and non-DL histograms for DRIVE are virtually indis-
cernible. The majority of both DL and non-DL methods reach peak 
accuracies in the range of 95-96% and 94-95%, respectively, which 
can be considered relatively close. In this case, non-DL techniques 
achieve the highest overall accuracy, albeit marginally higher than 
the best-performing DL method (99% versus 98%).

Thus, while DL methods demonstrate superior performance 
in the context of the STARE dataset, the distinction between DL 
and non-DL techniques is less evident when examining the DRIVE 
dataset. The results reveal a more nuanced picture, with both DL 
and non-DL methods achieving closely matched accuracy levels in 
certain instances. In light of the limitations of their analysis, which 
will be detailed in the subsequent paragraph, the researchers are 
inclined to surmise that Deep Learning (DL) has not yet displayed 
a definitive, substantial enhancement in accuracy for the specific 
challenge of retinal vessel detection using the DRIVE and STARE 
datasets. Owing to multiple constraints, this conclusion must be 
viewed as suggestive rather than definitive.

Firstly, as mentioned earlier, various research papers employ 
diverse datasets and criteria, complicating the process of conduct-
ing a fair comparison between algorithms. Secondly, and conse-
quently, the sample size utilized in the analysis is smaller than what 
could have been possible. Thirdly, even when the same datasets and 
criteria are employed, testing protocols may differ (e.g., the number 
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of folds, the division of data for training versus testing). DRIVE and 
STARE exhibit resolutions of 584x565 and 700x605, respectively, 
which are considerably lower than the resolutions offered by cut-
ting-edge fundus cameras.

Nonetheless, the researchers consider this approach for two 
primary reasons. Firstly, DRIVE is the most commonly utilized 
benchmark dataset in the retinal image processing papers they 
examined, and newly published studies continue to incorporate it 
in their evaluations. Secondly, there is a need for publicly accessi-
ble, annotated image datasets with modern resolutions (approxi-
mately 3,000 pixels). While some of these datasets are beginning to 
emerge, such as through international challenges like MICCAI REF-
UGE or the High-Resolution Fundus (HRF) dataset, their prevalence 
in the literature is not yet on par with that of DRIVE.

In conclusion, within the boundaries of their analysis and giv-
en the numerous constraints, the researchers cautiously infer that 
deep learning has not yet demonstrated a significant improvement 
in accuracy for retinal vessel detection using the DRIVE and STARE 
datasets. However, it is crucial to acknowledge the limitations of 
the analysis, including the diverse datasets and criteria used across 
different papers, the smaller sample size, and varying testing pro-
tocols. These factors make it challenging to draw a definitive con-
clusion about the superiority of deep learning in retinal vessel de-
tection.

Furthermore, although the DRIVE and STARE datasets have 
lower resolutions than state-of-the-art fundus cameras, they re-
main the most commonly used benchmark datasets in retinal im-
age processing research. To facilitate the further advancement of 
deep learning techniques in this field, there is a pressing need for 
publicly available, annotated image datasets with contemporary 
resolutions. Emerging datasets from international challenges, such 
as MICCAI REFUGE or HRF, may help bridge this gap and provide a 
more accurate representation of deep learning’s potential in retinal 
vessel detection.

Numerous algorithms, especially those employing high-accu-
racy deep learning techniques, often initiate the process by down-
sizing raw images to dimensions comparable to DRIVE, generally 
to decrease processing time. Consequently, the advantages of en-
hanced instrument resolution are substantially diminished or even 
completely nullified. This limitation, however, can be considered 
temporary: with the continuous advancements in accessible, af-
fordable, and powerful computing platforms, this constraint will 
likely be overcome. Furthermore, the growth in computational 
power is not expected to be paralleled by an increase in image size, 
as fundus image resolutions are already approaching the maximum 
resolution permitted by the optical systems of fundus cameras.

It is crucial to recognize that stating deep learning has no influ-
ence on retinal image analysis in general would be incorrect. The 
focus of this investigation has been on two highly specialized im-
age processing tasks: vessel segmentation and classification. Deep 

learning has led to groundbreaking research on retinal biomarkers, 
demonstrating that the retina alone can predict personal traits and 
the presence of diseases with remarkable precision [128]. This field 
relates to modern artificial intelligence classification, which may or 
may not involve image processing techniques.

Additionally, the analysis was focused on fundus camera im-
ages; however, image analysis systems also exist for images cap-
tured using other devices, such as Scanning Laser Ophthalmoscopy 
(SLO), Optical Coherence Tomography (OCT), Optical Coherence 
Tomography Angiography (OCT-A), and autofluorescence. These 
instruments provide insights into various aspects and processes of 
the retina [129].

In summary, while certain algorithms downsize raw images to 
DRIVE-like dimensions, reducing the benefits of higher instrument 
resolution, this limitation is likely temporary due to advancements 
in computing platforms. Additionally, it is important to acknowl-
edge that deep learning has a broader impact on retinal image anal-
ysis beyond the specific tasks of vessel segmentation and classifica-
tion. Groundbreaking research in retinal biomarkers demonstrates 
the potential of deep learning to predict personal characteristics 
and disease presence. Finally, this analysis focused on fundus cam-
era images, but other instruments such as SLO, OCT, OCT-A, and aut-
ofluorescence also provide valuable information about the retina 
and its various components, expanding the scope of retinal image 
analysis.

Conclusion
As medical diagnosis progresses with time so should the meth-

ods employed while examining key aspects of human anatomy cor-
respondingly advance. One particular area that requires attention 
is the categorization as well as separation of retinal vessels into 
either an artery or vein category precisely defining the existence of 
crucial features that signify a specific illness such as cardiovascular 
disease, hypertension or even stroke among others when it comes 
to retinal and microvascular ailments. Distinguishing between the 
two categories of vessels, in which morphological differences are 
significant, is paramount. For instance, clinical evaluations and cor-
relational studies might use measurements like Central Retinal Ar-
tery Equivalent (CRAE), Central Retinal Vein Equivalent (CRVE), or 
AVR to determine whether there are retinal indicators for various 
illnesses.

In recent years, the development of semi-automated and auto-
mated tools, including the Vascular Assessment and Measurement 
Platform for Retinal Images (VAMPIRE), SIVA, Interactive Vessel 
Analysis (IVAN), Quantitative Analysis of Retinal Vessel Topology 
(QUARTZ), and ARIA, has greatly improved the efficiency of reti-
nal vessel examination. These advanced instruments calculate the 
morphological features of retinal vessels, enabling more accurate 
diagnosis and evaluation of retinal and microvascular disorders.

The current focus on machine learning and deep learning-driv-
en methodologies signals a bright future for retinal vessel segmen-
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tation and categorization. As computational power advances and 
new high-resolution datasets emerge, it is expected that the reli-
ability and precision of these systems will continue to improve, 
leading to enhanced patient outcomes. The accurate classification 
of retinal vessels into arteries and veins is crucial for diagnosing 
and evaluating retinal and microvascular conditions, making the 
ongoing refinement of these methods essential.

The emergence of highly accurate methodologies for discern-
ing and categorizing retinal vessels via machine learning and deep 
learning relies upon the presence of copious annotated image data. 
Despite the abundance of imaging resources, such as the extensive 
UK Biobank housing over 50,000 retinal images, the endeavor to 
generate sufficient annotations presents a formidable challenge. A 
recent study by De Fauw, et al., [128] disclosed that the disparity 
between the number of images procured (1.5 million) and the vol-
ume of images that experts could annotate spanned 18 orders of 
magnitude.

Addressing this challenge is crucial for actualizing the broad 
automation of retinal vessel detection and classification. The con-
ventional approach of manual annotation by clinicians, character-
ized by the laborious task of accentuating and encircling particular 
elements in images, is susceptible to errors and time-consuming, 
in addition to the risk of monotony. Alternatives that eliminate the 
necessity for annotations, such as appraising the performance of 
the entire system rather than a solitary module, may prove more 
efficacious. For instance, ascertaining the accuracy of a comprehen-
sive DR screening instrument, as opposed to solely evaluating the 
performance of the microaneurysm detection module, delivers a 
more all-encompassing assessment of the system.

In conclusion, the establishment of dependable deep learning 
techniques for vessel detection and classification in retinal imaging 
necessitates the accessibility of an immense number of annotat-
ed images. The current constraints of publicly available data sets 
exemplify the difficulties intrinsic to annotating adequate quanti-
ties of images. Nevertheless, the pursuit of research targeting the 
reduction of annotation requirements harbors immense potential 
for the extensive automation of retinal vessel detection and classi-
fication. By examining the entire system, the demand for time-con-
suming and costly annotations can be diminished, yielding a more 
comprehensive evaluation of the system.

As the domain of retinal vessel segmentation and classification 
progresses, Non-Deep Learning (DL) methodologies may be instru-
mental in addressing a plethora of tasks. However, it is crucial to 
reassess the concept of what constitutes a “reasonably well-solved” 
problem and define it based on its real-world application rather 
than merely its performance on a restricted test set. The ultimate 
objective should be identifying the method that yields the most 
significant impact on healthcare outcomes, such as assisting in di-
agnosis, patient triage, or screening for Diabetic Retinopathy (DR), 
and contrasting it with other vessel classification and segmentation 
techniques in terms of advantages.

This change in viewpoint requires a move from solely assess-
ing a method’s effectiveness based on specific validation metrics, 
such as the area under the receiver operating characteristic curve 
(AUC), to taking into account its actual impact on health outcomes 
in practice. For example, consider the possibility of using vessel-de-
rived indicators to estimate the likelihood of developing systemic 
illnesses.

Assessing the effectiveness and worth of a technique on such 
an expansive scale is a considerably more extensive task than pre-
viously anticipated, demanding an in-depth comprehension of re-
al-world healthcare applications and the various factors affecting 
a technique’s performance. As the global discourse on this subject 
continues to develop, it will be intriguing to observe how validation 
paradigms adjust to this novel perspective. Ultimately, the valida-
tion of a technique should concentrate on its impact on healthcare 
outcomes and its capability to enhance real-world healthcare appli-
cations [128,130-133].

Open Issues
Effective examination of the eyes complexities and under-

standing human vision has been made possible by implementing 
machine learning in ophthalmology. Retinal vessel segmentation 
was one task that had historically challenged medical practitioners 
but has now been successfully tackled through this advanced ap-
proach. Convolutional Neural Networks (CNN) provide solutions 
to intricate tasks such as image classification and object detection 
and form the basis of retinal vessel segmentation. Another tech-
nology contributing to this segmentations’ success is Conditional 
Random Fields (CRF) which models long distance pixel interactions 
necessary for accurately depicting retinal anatomy. The integration 
of these two powerful techniques created Deep Vessel, an innova-
tive technology that merges CNN and CRF into a single deep net-
work. Medical professionals now have access to a valuable instru-
ment thanks to the system’s successful testing and validation using 
datasets like DRIVE, STARE, and CHASE. Automating retinal vessel 
segmentation has been a goal for the past two decades which led 
to various techniques being employed. Marin, et al., [134] utilized 
gray-plane vectors and moment invariant features for pixel classifi-
cation via neural networks. Meanwhile, Nguyen, et al., [135] tackled 
retinal vessel segmentation through multi-scale line detection and 
assessed vessel fragmentation. In summary, the incorporation of 
machine learning into ophthalmology has revolutionized the chal-
lenging process of segmenting retinal vessels.

The innovative Deep Vessel system, combining the strengths of 
CNN and CRF, exemplifies how technology can revolutionize med-
ical processes, enhancing efficiency and accuracy. As technology 
continues to progress, we can anticipate the emergence of more 
sophisticated solutions, driving the field of ophthalmology forward.

The progress of electronic vision has attained new milestones 
in recent years, particularly with the incorporation of Deep Learn-
ing (DL) techniques. Trailblazing researchers like Nguyen and Or-
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lando have made significant contributions to the field, employing 
a multi-scale line detection approach and a fully connected Condi-
tional Random Field (CRF) respectively, for achieving retinal vessel 
segmentation. However, these methods still fall short in providing 
distinct representations, rendering them susceptible to interfer-
ence from pathological regions, thus affecting the quality of their 
segmentation performance.

Conversely, the potency of DL in delivering clear and distin-
guishable representations has been well established, with Convo-
lutional Neural Networks (CNNs) being especially noteworthy for 
their proficiency in image classification and semantic segmenta-
tion. By outperforming traditional techniques, DL has paved the 
way for solving numerous issues in the realm of electronic vision.

A standout illustration of DL’s representation capabilities is 
the work of Xie, et al., [136], who utilized deep-edge total edge de-
tection (HED) systems to clarify ambiguous boundaries in object 
detection. The unique representations generated by HED have en-
abled it to produce remarkably accurate results across various sce-
narios [137-140].

In summary, conventional methods for retinal vessel segmen-
tation, despite their merits, are limited by their inability to provide 
distinct representations, making them vulnerable to interference 
from pathological regions. On the other hand, DL has proven to 
deliver highly distinct representations, making it a more fitting 
solution to address the challenges presented by electronic vision, 
including retinal vessel segmentation [141-143].
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