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Abstract

Computer-aided diagnosis (CAD) systems have enormous potential in medical imaging and diagnostic radiology, assisting radiologists 
in acquiring, managing, storing, and reporting digital medical images from various imaging techniques. In lymphadenopathy, the 
sole criterion to determine an abnormal lymph node is enlarged size; yet CT cannot display abnormal architecture in a normal-
sized node, which is the most significant shortcoming of the technique and a source of most false-negative results from CT 
examinations. We employed the deep convolutional neural network ResNet-34 to classify lymph node lesions in CT images from 
Abdominal Lymphadenopathy patients and Healthy Controls. We created a single database containing 1400 source CT images for 
Abdominal Lymphadenopathy patients (n=700) and Healthy Controls (n=700). Images were resized, normalized, and arranged in 
m batches of 16 images before supervised training, testing, and cross-validation of the ResNet-34, to identify and label lesions with 
automatic volume delineation of target areas. The ResNet-34 had high diagnostic accuracy, with an AUC of 0.9957 for Abdominal 
Lymphadenopathy and 1.00 for Healthy Control. Thus, the two groups had identically high sensitivity and specificity values of 
99.57% and 100%. The added effect of ResNet-34 is a success rate of 99.57% and 100% for classifying random CT images, with 
an overall accuracy of 99.79% in the testing subset for classifying lymph node lesions. We believe the final layer of ResNet-34’s 
output activation map is a powerful tool for diagnosing lymph node lesions of lymphadenopathy from CT images because of its high 
classification precision.
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Introduction
The abnormal size or consistency of the lymph nodes is known 

as lymphadenopathy, a disease with many different etiologies, in-
cluding infections, autoimmune diseases, malignancies, histiocy 

 
tosis, storage diseases, benign hyperplasia, medications, and iatro-
genic causes [1]. Patients with widespread lymphadenopathy, de-
fined as the growth of more than two noncontiguous lymph node 
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groupings, frequently signify an underlying systemic illness [1,2]. 
Abdominal pain, back pain, increased urination frequency, consti-
pation, and intestinal obstruction brought on by intussusception 
are all potential signs of mesenteric lymphadenopathy, even though 
they are not typically visible on physical examination [1]. Mesen-
teric adenitis is assumed to have a viral etiology and is character-
ized by right lower quadrant abdominal pain brought on by nod-
al swelling close to the ileocecal valve, which makes it difficult to 
distinguish from appendicitis [3]. Others include the etiologies of 
typhoid fever, ulcerative colitis, and non-Hodgkin lymphoma [3,4]. 
Lymphoma frequently results in lymphadenopathy in the chest, 
retroperitoneum, or superficial lymph node chains; however, mes-
enteric lymphadenopathy is not uncommon [5]. Enlarged nodes 
may be seen at the mesenteric root, scattered throughout the pe-
ripheral mesentery, or mixed root-peripheral pattern [6]. Early in 
the disease, the lymph nodes may be small and discrete; upon dis-
ease progression, the nodes often merge, forming a conglomerate 
soft-tissue mass. Lymphoma is a soft tissue tumor, and extensive 
mesenteric lymphadenopathy due to lymphoma has a characteris-
tic appearance [7].

State-of-the-art present-day Computed Tomography (CT) 
scanners offer excellent contrast and spatial resolution, which fre-
quently allows for the visualization of healthy retroperitoneal and 
mesenteric lymph nodes [2]. It is known that the sole criterion to 
determine if a lymph node is abnormal is enlarged size; CT cannot 
display abnormal architecture in a normal-sized node [8], which is 
the most significant shortcoming of the technique and a source of 
most false-negative results from CT examinations [7]. Additional 
false-negative results are artifacts due to partial volume averaging 
and variable respiratory excursions. The radiologist interprets en-
hanced abdominal CT images and determines whether lymphatic 
metastasis has occurred based on the lymph nodes’ texture, shape, 
size, and morphology [9]. However, it often remains challenging for 
the radiologist to make correct and timely decisions by combining 
the above-described features, especially for significant cases for 
which the accuracy of diagnosis certainly decreases, and errors are 
likely to occur [7,9]. Therefore, it is necessary to develop more con-
venient, faster, and more accurate systems that can assist radiolo-
gists in quickly identifying perigastric metastatic lymph nodes. 

Artificial intelligence-assisted image recognition techniques 
are currently able to detect the target area of an image and make 
classifications according to target features, which is like the di-
agnosis process of the radiologist. Specifically, computer-aided 
diagnosis (CAD) systems have proven useful in medical imaging 
and diagnostic radiology, improving accuracy, improving interpre-
tation consistency, helping prognostic evaluation, and supporting 
the therapeutic decision-making process from various imaging 
techniques (e.g., CT, MRI, US, and CR) [15,16]. More precisely, CAD 
systems rely on pattern recognition algorithms that identify suspi-
cious features on an image in clinical practice, assisting radiologists 
in detecting potential abnormalities on diagnostic radiology exams. 
CAD systems using Deep Convolutional Neural Networks (DCNN) 

successfully diagnosed COVID-19 patients from chest X-ray images 
and cervical lymph nodes in CT images [10,11].

This research aimed to employ the DCNN ResNet-34 for identi-
fying and classifying lymph node lesions in CT images from Abdom-
inal Lymphadenopathy patients and Healthy Controls.

Materials and methods
Study Population Database and Sample Size

An expert radiologist referred to the diagnosis of Abdominal 
Lymphadenopathy of CT images as the gold standard based on 
the location, shape, size, number, type, and extent of lymph node 
lesions due to infections, autoimmune diseases, malignancies, 
histiocytosis, storage diseases, benign hyperplasia, medications, 
and iatrogenic causes. We created a database containing a sample 
size of 1400 source CT images from online anonymous Abdominal 
Lymphadenopathy patients (n = 700) and Healthy Controls (n = 
700), reaching a 99% confidence level and a 1% error margin for 
the designated DCNN model. The Ethics Committee of the Medical 
Research Institute, Alexandria University, approved the study pro-
tocol.

Deep Convolutional Neural Network Model Selection

Transfer learning is an affordable deep learning algorithm for 
supervised machine learning that utilizes less training data and 
has better generalization. A new DCNN for image recognition has 
been created by modifying the activation function Softmax and the 
classification layer using transfer learning applied to a pre-trained 
Residual Neural Network (ResNet) [10]. Using a benchmark DCNN 
model with a 3.6% error rate [12], we trained, validated, and tested 
the supervised pre-trained ResNet-34 to classify the study database 
of 1400 CT images. We employed the Adam optimization algorithm 
to train a multilayer feed-forward ResNet-34 model with backprop-
agation of errors, adjusting the learning rate to 10-3 and using a 
batch size of 16 random CT images (i.e., of Abdominal Lymphade-
nopathy or Healthy Controls). The computational complexity of the 
ResNet-34 structure is moderate, with top-1 and top-5 errors of 
26.70 and 8.58, respectively [13]. Finally, we tested the model on a 
MacBook Pro with Mojave 10.14.6 operating on an Intel i7-core @ 
3.0 GHz processor and 16 GB RAM using the PyTorch Library (Ana-
conda Inc., New York, USA) [10].

As previously described, we used the Gradient-Weighted Class 
Activation Map (Grad-CAM) to locate and highlight a crucial region 
of interest, designating certain lymph node lesions with automatic 
volume delineation and 3D reconstruction of target areas for a cer-
tain category in an input CT image [10]. Grad-CAM employs a target 
class’s gradient information that flows back into the last convolu-
tional layer of the ResNet-34 to create class activation maps from 
the residual block (Figure 1A and 1B), where it fed the globally av-
eraged pooled convolutional feature maps into the last output layer 
to produce visual explanations, defined by Eq. 1 [14]:
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Figure 1: Block diagrams of a regular Convolutional Neural Network (CNN) (A), a residual Deep Convolutional Neural Network (DCNN) (B), and 
the arrangement of a three-step pipeline for the detection and classification of CT images using DCNN (C).

( ),k c
ky F x w x= +

   
(1)

where x and y are the building block’s input and output vec-
tors, respectively, ( ),k c

kF x w is the residual mapping, k u vF ×∈  is 
the global average pooling spatially averaging the k-th feature map 
with width and height u * v obtained from the last convolution lay-
er of the DCNN, and c

kw is the weight that connects the k-th feature 
map to a corresponding class c output node. Regarding the residual 
block depicted in Fig. 1B, F is given by Eq. 2:

( )2 1ReF w LU w x x= +   (2)

ReLU(.) is for a rectified linear unit, which is Eq. 3 gives:

( ) ( )Re max 0,LU x x=   (3)

The prediction score, which serves as input to the activation 
function Softmax at the output layer Sc, may be given as a weighted 
sum of the global average pooling for the k-th feature map from the 
following Eq. 4:

( ) ( ), ,, ,c k c c
c k k k k x y k x y k k kS w F w f x y w f x y= ∑ = ∑ ∑ = ∑ ∑   (4)

( ),kf x y denotes the spatial element (x, y) activation in the k-th 
feature map. The class activation map of class c, u v

cM ×∈  is the 
weighted sum of all feature maps’ activations at spatial element (x, 
y).

( ) ( ), ,c
c k k kM x y w f x y= ∑   (5)

The Grad-CAM for class c is the weighted sum of all feature 
maps produced by the last convolution layer in a DCNN. Given that 
the spatial elements in the feature maps associated with the nega-
tive weights were likely to belong to other categories in the image, 
the ReLU function (Eq. 3) was used to eliminate any potential influ-
ence from negative weights on class c as given by Eq. 6:

( ) ( )( )_ , Re ,c
c k k kGrad M x y LU f x yα= ∑

  (6)

where c
kα  is the weight obtained by computing the gradient of a 

prediction score Sc as given by Eq. 7:

( ), ,c
k x y c kS f x yα = ∑ ∂ ∂   (7)

The ResNet-34 block diagram for detection and classification is 
shown in Fig. 1C, which consists of a three-step pipeline for 1) de-
tecting random CT images, where the first layers detect edges and 
shapes, while the last layers work on the details; 2) identifying all 
suspicious lesions in the abdominal CT image; and 3) classifying 
Abdominal Lymphadenopathy patients from Healthy Controls.

All CT images were resized to 224 × 224, normalized, and ar-
ranged in m batches of 16 images to match the input requirements 
standards of the ResNet-34. The 1400 CT images were randomly di-
vided into 88 batches of 16 images, where training was carried out 
using 53 image batches (60%), validation using 18 batches (20%), 
and testing using the remaining 18 batches (20%). Passing CT im-
age batches through the ResNet-34 for training, batch normalization 
between skips double- or triple-layers containing nonlinearities for 
image classification [14]. The performance of the ResNet-34 was 
monitored as the training loss, validation loss, and error rate along 
with epochs. The receiver operating characteristic (ROC) curve, the 
area under the curve (AUC), the sensitivity and specificity analy-
sis, and the confusion matrix for actual vs. predicted Abdominal 
Lymphadenopathy and Healthy Control CT image values were used 
to evaluate the classification accuracy. Finally, K-Fold cross-valida-
tion tests were conducted to classify all source CT images from Ab-
dominal Lymphadenopathy patients and Healthy Controls, divided 
equally randomly among each one-to-five-fold.
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Results
Figures 2A to 2C show the performance of the ResNet-34 mod-

el, where the training and validation loss of random subsets of CT 
images and the error rate with the number of epochs converge at 
the end of the training phase. Sixty-two epochs were sufficient to 

avoid under and over-fitting, reflecting the high precision of testing 
the subset of random CT images used to detect and classify lymph 
node lesions. Figure 2D shows that the accuracy score of the train-
ing, testing, and validation phases attained maximum values begin-
ning at epoch 62.

Figure 2: Deep Convolutional Neural Network (DCNN) ResNet-34 performance as Training Loss (A), Validation Loss (B), Error Rate (C), and Ac-
curacy Score of the three learning phases (i.e., Training, Testing, and Cross-Validation) (D) for Abdominal Lymphadenopathy patients and Healthy 
Controls CT images.

Fundamental measures of the diagnostic accuracy of the Res-
Net-34 model, as of ROC curves of the true-positive rate versus the 
false-positive rate, for Abdominal Lymphadenopathy patients and 
Healthy Control CT images, are shown in Figure 3A and 3B. AUC 
values for Abdominal Lymphadenopathy patients and Healthy Con-
trols were 0.9957 and 1.00, which signify a perfect accuracy in the 

diagnosis and identical sensitivity and specificity values of 99.57% 
and 100% for the two groups, respectively, with an error rate of 
5.39 × 10-3 by three-fold cross-validation test, as shown in Table 1. 
The ResNet-34 achieved a high average accuracy of 99.30% and a 
low error rate of 6.9 × 10-3 in classifying all source CT images.

Figure 3: The receiver operating characteristic (ROC) curve analysis of sensitivity against 1-specificity for Abdominal Lymphadenopathy patients 
(A) and Healthy Controls (B) CT images.
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Moreover, the confusion matrix of Figure 4 shows that the 
ResNet-34 had a success rate of 99.57 and 100% for classifying all 
source CT images of Abdominal Lymphadenopathy patients and 
Healthy Controls, respectively. The overall accuracy of the Res-
Net-34 for testing the subset of random CT images was as high as 
99.79%, which means an error rate as low as 0.21%. Figures 5A 
and 5B show samples of input CT grayscale images batch for Ab-

dominal Lymphadenopathy patients and Healthy Controls. Figures 
5C and 5D also show samples of the colored activation map of the 
ResNet-34 final output layer for the two different subsets. The acti-
vation map is a proper visual diagnostic representation, highlight-
ing specific lymph node lesions of a CT image, contributing to the 
added effect of the ResNet-34 classification process.

Figure 4: Confusion matrix of detection and classification results for Abdominal Lymphadenopathy patients and Healthy Controls CT images.

Figure 5: Example of input grayscale CT images for an Abdominal Lymphadenopathy patient (A) and a Healthy Control (B). Output colored activa-
tion maps of the same CT images for an Abdominal Lymphadenopathy patient (C) and a Healthy Control (D).

Table 1: Accuracy and error rate of K-Fold cross-validation tests.

K-Fold Accuracy (%) Error Rate

1 99.39 6.08 ×10-3

2 99.45 5.42 × 10-3

3 99.57 5.39 ×10-3

4 98.34 6.58 ×10-3

5 98.86 1.14 × 10-2

Average Result 99.3 6.97 ×10-3
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Discussion
Lymphadenopathy is a broad term describing lymph node 

pathology that does not necessarily result in increased size but 
includes its atypical number and derangement of internal archi-
tecture [1,2]. Moreover, it has been shown that 5%-10% of CT-de-
tected abdominal lymphadenopathy cases are related to benign 
processes rather than malignant infiltration. Unfortunately, no dis-
tinctive features distinguish benign from malignant lymphadenop-
athy since individual nodes greater than 2 cm and confluent node 
mantles may be seen in benign diseases [4, 5, 7, 9]. Our proposed 
CAD system based on the ResNet-34 model showed a very high 
performance due to the convergence of the training loss, validation 
loss, and error rate to a minimum (i.e., zero) (Figure 2A to 2C). The 
ResNet-34 builds on constructs from pyramidal cells in the cerebral 
cortex using skip connections or shortcuts to jump over some lay-
ers, which permits the advantageous reduction of over-fitting and 
leads to faster optimization and better performance of the DCNN 
model. Only 62 epochs were sufficient to attain a high and stable 
accuracy score of training, testing, and cross-validation of random 
CT images without under or over-fitting (Figure 2D).

The AUC analysis of ROC curves (Figures 3A and 3B) of 
true-positive rate (i.e., sensitivity) versus false-positive rate (i.e., 
1-specificity) showed that points in the upper left corner signify 
sensitivity and specificity as high as 99% and 100% for Abdominal 
Lymphadenopathy and Healthy Controls, respectively, by three-fold 
cross-validation test (Table 1). These results outperform those by 
Liu, et al., [17]. They proposed a CAD system based on a 3D blob 
enhancement filter for automatically detecting enlarged lymph 
nodes in contrast-enhanced abdominal CT images from 9 patients 
compared to the original multi-scale Hessian analysis performance. 
Their method achieved a sensitivity and false-positive rate of 91% 
and 17% compared to 82% and 28% for the multi-scale Hessian 
analysis. Bejnordi, et al., [18] compared the efficiency of automated 
DCNN algorithms to pathologists’ diagnoses for detecting metasta-
ses in lymph nodes from breast cancer patients stained with he-
matoxylin and eosin. They have shown that some DCNN algorithms 
achieved better diagnostic performance than a panel of the 11 pa-
thologists who participated in the simulation exercise designed to 
mimic routine pathology workflow. The best algorithm attained 
a lesion-level true-positive fraction of 72.4% at a mean of 0.0125 
false positives per typical whole-slide image, which is equivalent to 
the pathologists without time limitations. The AUC of the best algo-
rithm for the whole-slide image classification task was 0.994, which 
performed significantly better than the pathologists (0.810, p < 
0.001) with time constraints in a diagnostic simulation. Moreover, 
the performance of the 5 best algorithms was comparable with an 
expert pathologist (AUC: 0.960 vs. 0.966) interpreting whole-slide 
images without time constraints, yet; their approach was not eval-
uated in a clinical setting.

The added effect due to the success rate of the ResNet-34 was 
99.57% and 100% for classifying all source CT images of Abdom-

inal Lymphadenopathy and Healthy Controls, respectively (Figure 
4). The overall accuracy of the ResNet-34 for testing the subset 
of random CT images used for the detection and classification of 
lymph node lesions was as high as 99.79%, with a very low error 
rate of 0.21% in the testing phase compared to the 3.6% showed 
for the benchmarked ResNet-34 [12]. We have recently shown sim-
ilar results using the same ResNet-34 model, which showed high 
performance and precision in detecting and classifying COVID-19, 
pneumonia, and the Normal Controls from CXR images with an ac-
curacy of 100%, 99.6%, and 98.9, with overall accuracy of 99.5% 
for the testing subset for diagnosis [10]. We employed the Grad-
CAM method to localize and visualize an ROI within CT images, con-
sistently highlighting a specific area common in shape, pattern, or 
location among CT images within the same class but distinct from 
images in other modality classes [14]. The activation map (Figures 
5C and 5D) is thus an informative visual diagnostic representation, 
highlighting certain morphological anomalies of lymph nodes in 
a CT image, contributing the most to the ResNet-34 classification 
process.

The problem of classifying gastrointestinal polyps using a 
stacking ensemble technique consisting of three fine-tuned DCNN 
architectures; Xception, ResNet-101, and VGG-19; where the net-
work weights were initialized from the ImageNet dataset has been 
recently addressed [19]. Endoscopic image enhancement oper-
ations have been applied to remove specular reflection, clipping 
unnecessary regions, contrast enhancement, and noise reductions. 
An accuracy of 98.53%, a recall score of 96.17%, a precision value 
of 92.09%, a specificity score of 98.97%, and an AUC of 0.99 were 
attained using five-fold cross-validation. Thus, the specified polyp’s 
classification method showed significantly improved performance 
metrics on available public datasets, which could be helpful for en-
doscopists to make accurate decisions.

The DenseNet-169 CNN model has also been employed suc-
cessfully to analyze digitized slides of prophylactic gastrectomy 
specimens from seven patients with germline CDH1 mutations to 
detect 133 carcinoma foci, which achieved an AUC of 0.9986 on 
individual patches and 0.9984 on the external validation dataset 
[20]. The model had a sensitivity of 90% with a false-positive rate 
of less than 0.1%. The network detected 100% of carcinoma foci 
on whole slide images, correctly eliminating an average of 99.9% 
of the non-cancer slide area from consideration. Moreover, Liu, et 
al., [21] have successfully employed a 3D U-Net model for automat-
ically detecting and segmenting lymph nodes on 393 pelvic diffu-
sion-weighted imaging images for patients suspected of prostate 
cancer. The dice score, true positive rate, positive predictive value, 
volumetric similarity, Hausdorff distance, average distance, and 
Mahalanobis distance values for the segmentation of suspicious 
lymph nodes were 0.85, 0.82, 0.80, 0.86, 2.02, 2.01, and 1.54 mm 
respectively. For identifying suspicious lymph nodes, the precision, 
recall, and F1-score were 0.97, 0.98, and 0.97, respectively. The 
AUC of the model for identifying prostate cancer patients with sus-
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picious lymph nodes in the temporal validation dataset was 0.96, 
with high consistency of lymph node staging in both the model and 
an experienced radiologist (k = 0.92). Furthermore, Iuga, et al., [22] 
have also recently developed an automatic tool for the 3D detec-
tion and segmentation of lymph nodes in 89 contrast-enhanced CT 
scans of the thorax using a DCNN U-Net based on 3D foveal patch-
es. The algorithm achieved good overall performance with a total 
detection rate of 76.9% for enlarged lymph nodes during four-fold 
cross-validation in the training dataset, with 10.3 false positives per 
volume and 69.9% in the unseen testing dataset. A better detection 
rate was observed in the training dataset for enlarged than smaller 
lymph nodes; the detection rates for lymph nodes with a short-axis 
diameter ≥ 2 cm and 0.5-1cm were 91.6% and 62.2% (p < 0.001), 
respectively. The best detection rates for lymph nodes in Level 4R 
and Level 7 were 83.6% and 80.4%, respectively.

Conclusion
A highly expert radiologist is required to diagnose lymph node 

lesion morphological anomalies in CT images. We employed the 
ResNet-34 to detect and classify CT images of Abdominal Lymph-
adenopathy patients and Healthy Controls. Images were resized, 
normalized, without any image augmentation, and arranged in m 
batches of 16 images before supervised training and validation of 
the DCNN classifier. The added effect of the ResNet-34 model is a 
success rate of 99.57% and 100% for classifying random CT imag-
es of Abdominal Lymphadenopathy patients and Healthy Controls, 
with an overall accuracy of 99.79% in the testing subset for detect-
ing and classifying lymph node lesions. Based on this high classifi-
cation precision, we believe the output activation map of the final 
layer of the ResNet-34 is a powerful tool for accurately diagnosing 
Abdominal Lymphadenopathy from CT images.
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