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Abstract

Computer-aided classification can support medical practitioners in the diagnosis process of brain tumours, especially in case of a 
biopsy contraindication. Convolutional Neural Networks (CNNs) have been long the model of choice for such imaging and computer 
vision tasks. However, due to their local inductive bias, they lack the ability to properly capture long range dependencies in the same 
way a Vision Transformer (ViT) does. Despite this, ViT suffers the drawback of requiring large training dataset which is considered 
a challenge in medical datasets. In this paper, we investigate the use of hybrid model CoAtNet which combines the advantages of 
both CNNs and ViTs for brain tumour classification. The dataset used for this study contains MRI images of three different classes 
of brain tumours, namely, Glioma, Meningioma, Pituitary, and a fourth class of no tumour. The model proved to be effective for this 
dataset if pre-trained on ImageNet and achieved an accuracy of 97%. We also demonstrate that with the addition of augmentations, 
batch size increase, and use of exponentially decaying learning rate, the performance of the model can be further enhanced to reach 
an accuracy of 99.16% which is higher than state-of-the-art. The results demonstrate the effectiveness and potential of CoAtNet for 
small data sizes and medical imaging.

Keywords: CoAtNet, Image classification, Convolutional neural networks, Vision transformers, Brain tumour classification, Brain 
tumor, Computer vision; Deep learning

Introduction
A brain tumor represents a complex and intricate medical con-

dition characterized by the formation of an aberrant mass of cells 
within the brain and its associated glial cells. These masses of cells 
can manifest in two primary forms: they may either exhibit a ma-
lignant disposition, indicating the presence of cancerous cells, or 
they may take on a benign nature, signifying non-cancerous growth.

Within the realm of malignant brain tumors, there exists a 
crucial subdivision into two distinct categories: primary and sec-
ondary [1]. Primary brain tumors originate within the brain itself, 
emerging from the neural tissue or other components of the central 
nervous system. Secondary brain tumors, on the other hand, result 
from the metastasis or spread of cancerous cells from other regions 
of the body, eventually infiltrating the brain tissue.

To establish the definitive presence of a brain tumor and as-
certain its precise nature, the medical community commonly em-
ploys a dual-pronged diagnostic approach. This approach hinges on 
the utilization of Magnetic Resonance Imaging (MRI) scans, which 
harness the power of advanced technology to create detailed and 
cross-sectional images of the brain’s intricate structures. The MRI 
scan is complemented by the indispensable procedure of biopsy, 
which involves the extraction and examination of a tissue sample 
from the suspected tumor site. The analysis of this tissue under a 
microscope provides critical insights into the nature of the tumor, 
whether it is benign or malignant, and helps determine the most 
appropriate course of treatment.

The overarching objective and significance of automating the 
classification of brain tumor diagnoses cannot be overstated. This 
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innovative approach seeks to leverage cutting-edge technology and 
machine learning algorithms to streamline and enhance the diag-
nostic process. By automating the classification of brain tumor di-
agnoses, healthcare practitioners can benefit from more accurate 
and rapid assessments, facilitating quicker decision-making and 
treatment planning. This becomes especially vital in cases where 
recommending a biopsy may not be advisable due to various con-
traindications, patient factors, or the need for urgent intervention.

Brain Tumor Imaging and Datasets
The dataset used for this study is a publicly available dataset 

created by Cheng, et al., [1] who obtained them from Nagfang hos-

pital and General Hospital, Tianjing Medical University, China from 
2005 to 2010. The dataset consists of T1-weighted MRO of three 
different tumor classifications Gliomas, meningiomas, and pituitary 
tumor which have 1426, 708, and 930 samples, respectively. In to-
tal, they are 3064. To increase performance and generalizability, 
an extended dataset was used, obtained from Kaggle website. The 
dataset extends the original by adding Br35H challenges dataset, 
and another Kaggle dataset. The extended dataset also consists of a 
no-tumor fourth classification. Table 1 shows the extended dataset 
samples and how it is divided into testing and training (Table 1). 
The numbering convention of the classification type is used later in 
the results figures.

Table 1: Dataset used for the study.

Number Classification
MRI samples 

(Training + Testing)

0 Glioma 1321 + 300

1 Meningioma 1339 + 306

2 No Tumor 1595 + 405

3 Pituitary 1457 + 300

Note*: The numbering convention of the classification type is used later in the results figures.

Related Work
There is a vast literature dealing with the same dataset of this 

study which aim to classify brain tumors. There are two commonly 
used techniques to handle this problem one is machine learning, 
two is deep learning. We are only concerned with deep learning in 
this work. Most deep learning methods involve the use of convolu-
tional neural networks. Francisco Javier Diaz-Pernas, et al., [2] pro-
posed a CNN which is composed of three parallel CNN networks, 
each of two stages. The parallel networks are designed such that 
each network has a different kernel different that are 128, 96, 64 to 
capture both local and global information. The output of the paral-
lel network is passed to a feature concatenator and a fully connect-

ed projector. They achieved an accuracy score of 97.3%. In other 
approaches, other deep learning methodologies have also exhibited 
remarkable performance gains. One notable strategy is the utiliza-
tion of pre-training, as demonstrated by Ozlem and Chefer [3] in 
which they proposed fine tuning of ResNet50, and their accuracy 
was 99.02%. The use of pre-trained models has emerged as a pre-
vailing trend, offering a head start by leveraging the knowledge en-
coded in models pre-trained on large datasets. These approaches, 
as summarized in Table 2, consistently exhibit higher accuracies, 
underscoring the benefits of transfer learning in brain. Others ap-
proached used capsule neural networks which are proposed as an 
alternative to CNN. Afshar, et al., [4] used capsule neural networks 
and where able to obtain 90.89%. 

Table 2: Previously used pre-trained famous model for brain tumor classification.

Authors AlexNet GoogleNet VGG16 VGG19 ResNet50

Rehman, et al., [7] 97.39% 98.04% 98.69% - -

Swati, et al., [8] - - - 96.79% -

Ozlem and Chafer [3] - - - - 99.02%

Recently, vision transformers [5] were proposed for use in com-
puter vision tasks and were found to be better than CNN at global 
information and long-range dependencies capturing. S. Tummala, et 
al., [6] used vision transformer for brain tumor classification. They 
used multiple pre-trained vision transformers with various opti-
mizers, epochs, batches, and learning rates. They used Ensembling 

technique to gather all their models and produced an accuracy of 
98.70%. Transformers can achieve results comparable or even bet-
ter than CNNs. However, their drawback is that they tend to require 
bigger datasets which is a challenge in medical imaging (Table 2).

the landscape of brain tumor classification within the purview 
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of deep learning is teeming with innovation and potential. The di-
verse methodologies discussed herein, from parallel CNN networks 
to pre-training techniques and visionary transformer models, ex-
emplify the dynamism of this field. With each new approach, re-
searchers’ inch closer to achieving the ultimate goal of more ac-
curate, rapid, and reliable brain tumor classification, ultimately 
enhancing clinical decision-making and patient care. Moreover, as 
this domain continues to evolve, it prompts the field to confront 
fundamental challenges, such as data scarcity, thus highlighting the 
imperative for a holistic approach that encompasses not only algo-
rithmic innovations but also the broader ecosystem of data acquisi-
tion and curation. These multifaceted endeavors collectively signify 
the relentless pursuit of advancing healthcare through the fusion of 
cutting-edge technology and medical expertise.

CoAtNet
Convolutional Neural Networks and Vision Transformers both 

have their advantages and disadvantages. For example, CNNs they 
computationally efficient and tend to have a relatively small num-
ber of parameters. In addition, do not require a large dataset to 

achieve high results and are able to capture local features profi-
ciently due to their inductive bias. However, inductive bias can if 
not tailored properly can lead to overfitting and be less generaliz-
able to new data. Another disadvantage is that dataset needs to be 
as diverse as possible so that the inductive bias can generalize well. 
Transformers, on the other hand, do not have any inductivḺe bias. 
This is due to their adoption of the attention mechanism. Neverthe-
less, for a transformer to figure out data, it requires much larger 
datasets. Also, they tend to require heavier computational resourc-
es than CNNs. Zihang Dai, et al., [9] proposed CoAtNet which is a 
novel architecture, as shown in Figure 1, combining both the advan-
tages of transformers and neural networks. Their model is a rather 
hybrid CNN and ViT model. They built their model based on two key 
insights. The first is that depth wise convolutions and self-attention 
can be naturally unified via simple relative attention; the second 
insight is that vertically stacking convolutions and attention layers 
is effective in improving performance. Their model has been shown 
to achieve 86% on ImageNet-21K top-1 accuracy without requiring 
any additional dataset (Figures 1,2).

Figure 1: CoAtNet architecture [9].

Figure 2: Comparison between two different types of residual blocks. (a) conventional Residual block, and (b) inverted blocks (used in CoAtNet 
model and MobileNet-V2) [13].

CoAtNet implements an inverted residual block called MB-
Conv [10]. It is a type of block based on residual blocks [11] with 
an inverted structure for efficiency. It was primarily proposed in 
paper of MobileNetV2 [9] model. It has been since then reused for 
several optimized CNN models. A traditional residual block has a 
wide-narrow-wide structure, whereas an inverted residual block as 
a narrow-wide-narrow structure, as shown in Figure 2. This inver-

sion has far-reaching implications for the network’s efficiency and 
capacity to capture complex features within data. The unique de-
sign of MBConv holds promise for enhancing the computational ef-
ficiency and overall performance of deep learning models. To gain a 
deeper understanding of the architectural differences between con-
ventional and inverted residual blocks, it is crucial to examine the 
underlying convolutional operations. These convolutions, which 
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are the fundamental building blocks of neural networks, play a piv-
otal role in shaping the network’s ability to extract and transform 
information from the input data. Convolutions are mathematically 
defined in the context of MBConv, showcasing the distinctive char-
acteristics that set it apart from its traditional counterparts. This 
distinction underscores the significance of the inverted residual 
block in the CoAtNet architecture and its potential to contribute to 
more efficient and effective neural network designs. Convolutions 
are expressed as follows:

( )
i i j j

j i
y w x−

∈

= ∑ 

  
(1)

Where x_i,y_i∈R are the input and output at position i, respec-
tively, and L(i) denotes a local neighborhood of i. On the other hand, 
self-attention allows the receptive field to be the entire spatial lo-
cations and computes the weights based on the re-normalized pair-
wise similarity as expressed below:
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The two equations (1) and (2) are proposed in CoAtNet to be 
merged as follows:
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Table 3: Desirable Properties in convolutions and attention that CoAtNet model retains [12].

Property Convolution Attention

Translational Equivariance  -

Input-adaptive Weighting -  

Global Receptive Field -  

This configuration retains the property of translation 
equivariance in convolution, and it retains both the input-adaptive 
weighting and global receptive fields of self-attention mechanism. 
Table 3 summarizes the properties that CoAtNet retains from 
convolutions and attention mechanism (Table 3). 

Experimental Setup
The selected CoAtNet variation for this study is CoAtNet-0. We 

used TensorFlow and Keras platforms to conduct this experiment. 
The only available pre-trained CoAtNet found in the used platform 
is CoAtNet-0 as such we adopted it for this experiment. Also, given 
the fact that it has the smallest number of parameters we anticipate 
that it would give optimal results given our small dataset. The ex-
periments were conducted in Google Colab Pro+ using the standard 
GPU NIVIDIA V100. We experimented with a variety of scenarios 
and compared them. We used both the trained and pre-trained ver-
sions of CoAtNet in our experiments. We used cross entropy loss 
function:

( ) ( )' log
i

loss P i P i=∑
 
(4)

Where P’(i) is ground truth probability and P(i) is predicted 
probability. The number of epochs is 50. The dataset was expand-
ed and an additional fourth class added, as mentioned in the data-

set section. The split of the data is kept as for training and testing 
where roughly training is 81% and testing is 19%. In addition, 10% 
of the training dataset was dedicated for validation. The model was 
trained end-to-end, meaning no layers were frozen during training, 
in case of fine tuning. The model was initially trained without any 
augmentations. As we attempt to improve performance, we gradu-
ally apply augmentation, and normalization. We also investigated 
the effect of increasing batch size and implementing a scheduled 
decaying learning rate.

Normalization

 To make convergence faster and training more stable, we uti-
lize input normalization in which the inputs are made to have a 
mean of 0 and standard deviation of 1. 

Augmentation

 Augmentation involves the expansion of a dataset by adding 
transformations or perturbations to a dataset. In our experiments, 
as mentioned, we began with plain training, that is without any aug-
mentation. Then, we gradually added augmentations to test perfor-
mance in the sequence mentioned below:

a.	 Flipping: random horizontal flipping of an image on axis 
x.

b.	 Rotation: random rotation with a factor of 0.2.
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Increase of Batch Size

The batch size in our experiments was very large. We selected a 
batch size of 100. According to Samuel, et al., [12] increasing batch 
size to a large number of increases performance and has a similar 
effect learning rate decay.

Exponentially Decaying Learning Rate

The learning rate was made exponentially decreasing. The ini-
tial rate was set at 0.0001. In the final experiment it was further 
reduced to 0.000001. 

( )0 expr rI I kt= −
 
(5)

The above techniques will be referred to in this convention: (N) 
for normalization, (AUG) for augmentation, (LB) for Large Batch 
Size, and (DLR) for decaying learning rate. The optimizer used 
throughout all experiments is ADAM optimizer [13].

Results
In the beginning the model was run in plain training where no 

additional augmentations or learning rate decay were added. Plain 
training was applied to a pre-trained and a non-pretrained CoAt-
Net-0 model. The results showed that pre-trained model outper-
forms the non-pretrained model, where the first achieved 97% and 

the latter 88%. Then, we increased the batch size from 1 to 100. 
The accuracy improved to 97.4%. We decided to add an augmen-
tation (random flipping) to improve performance which resulted 
in 99.08%. Then, we also add exponential decaying leering rate 
along with normalization to increase performance. However, the 
performance dropped slightly, even though we were expecting bet-
ter results. For this reason, we decreased the initial learning rate to 
0.000001. We also made an important observation on the training 
accuracy. Before applying normalization, we noticed to have some 
perturbations in the training accuracy. For this reason, we add nor-
malization to smooth out training. The comparison of those two 
trainings, the one before and the one after normalization is shown 
in Figure 3. Normalization improved the training profile (Figure 3). 

In the last experiment, as mentioned earlier, we decreased the 
learning rate from 0.00001 to 0.000001. In addition, we added one 
more augmentation which is random rotation. In total, the augmen-
tations became two. We achieved the higher accuracy in literature 
which is 99.16%. The table below summarizes our results. The con-
fusion matrix of the best achieved accuracies is shown in Figure 4 in 
Table 4, we compare our results with previous literature. In Figure 
5, we show some samples of output from the model with the high-
est accuracy (Table 4) (Figure 4). 

Figure 3: Comparison between two different types of residual blocks. (a) conventional Residual block, and (b) inverted blocks (used in CoAtNet 
model and MobileNet-V2).

Figure 4: Confusion matrix for highest performing models. (a) pre-trained + LB + 2AUG + DRL, (b) pre-trained + LB + 1AUG + DLR, and (b) pre-
trained + LB + 3AUG + DRL.
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Figure 5: Samples of classified images. Green indicates correct classification. Red indicated wrong classification.

Table 4: Results of CoaAtnet-0 model and enhancements. The fine-tuned models are pre-trained on Image Net.

Model Accuracy (%)

Non-pretrained 88

Pre-trained 97

pre-trained + LB 98.3

pre-trained + LB + AUG 97.4

pre-trained + LB + AUG + DLR 99.08

pre-trained + LB + AUG + NRM + DLR 98.86

pre-trained + LB + 2AUG + NRM + DLR 99.16

Discussion
The results have illustrated the transformative potential of 

the CoAtNet model in the field of brain tumor classification, chart-
ing a path towards a promising future in medical image analysis. 
The accuracy obtained was 99.16% which is the highest recorded 
in literature. Though, one may notice that when the model is not 
pretrained, it achieves quite a low accuracy which is around 88%. 
Nevertheless, for a big model like CoAtNet, this result is actually 

considered a breakthrough. As in our experiments, VGG, and Res-
Net50 and ResNet101 failed to converge when not pre-trained. In 
Figure 6, we show a comparison between the trajectories training 
of a non-pretrained CoAtNet and a non-pretrained ResNet. This 
behavior proves that CoAtNet has high flexibility even with small 
datasets which is usually the case in medical imaging. Therefore, it 
can be a good potential for all future applications, beyond brain tu-
mors, in medical imaging and should replace the choice of ResNet. 
(Figures 5,6) (Table 5). 

Table 5: Comparing results to related literature work.

Author Method Accuracy (%)

Cheng, et al. [14] BoW − SVM 91.28%

Ismael and Abdel-Qader [15] DWT − Gabor − NN 91.90%

Abiwinanda, et al. [16] Two-layer CNN 84.19%

Afshar, et al. [4] CapsNet 90.89%

Pashaei, et al. [17] CNN + KELM 93.68%

Phaye, et al. [18] Diverse CapsNet 97.50%

Seetha and Selvakumar [19] CNN 97.50%

Avşar and Salçın [20] Region based CNN 91.66%

Zhou, et al. [21] LSTM + DenseNet 92.13%
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Anaraki, et al. [22] CNN + GA 94.20%

Gumaei, et al. [23] Hybrid PCA − NGIST + RELM 94.23%

Sultan, et al. [24] Deep NN 96.13%

Deepak and Ameer [25] CNN + SVM 98.00%

Kaplan, et al. [26] nLBP + KNN 95.56%

S. Tummala, et al. [6] ViT + Ensemble 98.70%

Ozlem P. and Cahfer Gungen [3] Fine-tuned ResNet50 99.02%

Proposed study
Fine-tuned CoAtNet-0 + LB 98.30%

Fine-tuned CoAtNet-0 + LB + 1AUG + DLR 99.08%

 Fine-tuned CoAtNet-0 + LB + 3AUG + DLR 99.16%

Figure 6: a comparison between a non-pretrained ResNet and a non-pretrained CoAtNet. (a) ResNet diverges and cannot handle small datasets 
without pre-training, (b) CoAtNet shows flexibility with small datasets without pre-training.

Conclusion
In In this study, we used the CoAtNet model to classify brain 

tumors. The model showed potential if pre-trained and certain ad-
justment such as the addition of augmentations, decaying learning 
rate, and use of large batch size techniques are implemented. We 
were able to achieve an accuracy of 99.16% which is higher than 
state-of-the-art.
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