
264264

What is the Clue to Cure Pompe Disease in Childhood?
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Abstract

Pompe disease, acid maltase disease, is a rare, autosomal recessive inherited metabolic disorder from the group of lysosomal storage 
diseases, which is based on a genetically caused deficiency of an enzyme and is treatable by substitution of this enzyme. Pompe 
disease is also known as myopathy due to acid maltase deficiency, α-1,4-glucosidase deficiency or acid α-glucosidase deficiency, 
glycogen storage disease type II or glycogenosis type II. It is inherited in an autosomal recessive manner. When each parent carries 
one copy of the mutated gene the child will be affected by Pompe disease. Pompe disease is one of the metabolic myopathies and 
is a glycogen storage disease. The incidence of Pompe disease is estimated to be approximately 1:40,000-1:200000. The disease is 
due to a genetic deficiency or complete absence of the lysosomal Enzyme Acid α-glucosidase. GAA degrades glycogen to glucose, 
particularly in the lysosomes of muscle tissue. Due to the lack of enzyme, glycogen derived from autophagy accumulates in the 
lysosomes. As with other lysosomal storage diseases, the cells are affected in their function first, and increasingly as the disease 
progresses, the entire muscle tissue is affected. Once damage has occurred, it is usually irreversible. Three different types are 
known, an infantile form (IOPD), a non-classic IOPD without cardiac involvement and a late onset LOPD. IOPD patients show a GAA 
enzymatic activity of 1-3 %, in LOPD patients an enzyme activity of 2-40 % of GAA is present. Diagnosis will be confirmed by GAA 
enzyme analysis prenatally in amniotic fluid and postnatally by alpha 1-4 glucosidase activity in the blood. The later the disease 
appears the better it can be treated. This manuscript focuses on the present therapeutical options to treat Pompe disease in children 
and shed light on present molecular research curing the disease.

Keywords: Pompe, Children, Glucosidase, Enzyme deficiency, Treatment

Introduction
The disease was named after the Dutch pathologist Pompe, who 

first described the disease-related abnormalities in 1932. In 1963, 
the enzyme, acid alpha-glucosidase, was described and its absence 
was found to be responsible for the disease. Pompe disease is an 
inherited, autosomal recessive, so-called lysosomal storage disea-
se. Lysosomes are smallest cell components in which certain sub-
stances are stored and degraded. Among other things, the enzyme 
alpha-glucosidase is necessary for the degradation of stored glyco-
gen. Genetic alterations in the gene of acidic alpha-glucosidase lead 
to reduced formation or activity of the enzyme and thus to impaired 
degradation of glycogen in the lysosomes. The excessive storage of 
glycogen then leads to dysfunction in several organs, especially the 
muscles and the heart. The disease is divided into an infantile form 
with onset in infancy and a type with onset in adolescence or adul-
thood. The onset of symptoms, the symptoms themselves and the  

 
course of the disease are extremely variable and fluid. The onset of 
the disease in the newborn, in the first weeks of life, is just as pos-
sible as in adolescence. Severe muscle weakness, respiratory and 
cardiac dysfunction can occur shortly after birth, In Pompe disease, 
a distinction is made between an early form of the disease, which 
can already cause symptoms in infancy, and a late manifestation, in 
which the symptoms appear in childhood or even in adulthood. In 
the early form of the disease, newborns are characterized by weak 
drinking and failure to thrive, as well as muscle weakness, reduced 
muscle tone and low motor activity. In addition, there is marked 
myocardial damage that, if untreated, leads to death in the first 
year of life. In the foreground of the late manifestation is progressi-
ve muscle weakness and muscle wasting. The muscles of the pelvic 
and shoulder girdles are particularly affected. Patients often have a 
conspicuous gait pattern, and the walking distance is limited. They 
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have difficulty rising from a lying position or rising from a chair. 
When the arms are involved, overhead work is hardly possible, and 
there are increasing difficulties in everyday life. Due to the involve-
ment of the respiratory muscles, lung function steadily decreases 
and patients may require non-invasive ventilatory support. Under-
lying the disease process is abnormal storage of glycogen in muscle 
cells. Glycogen, the storage form of glucose in animal cells, is nor-
mally degraded by the enzyme alpha-1,4-glucosidase.

Therapeutical Targets to Treat Pompe Disease
Enzyme Replacement Therapy

Alglucosidase Alpha (Myozyme): Alglucosidase alfa, also 
known as Myozyme, is a drug used for the treatment of Pompe di-
sease, a rare lysosomal storage disorder. It is an enzyme replace-
ment therapy that replaces the deficient enzyme in patients with 
Pompe disease. It was approved for medical use in the United States 
in 2006 and is the first drug available to treat this disease. Alglu-
cosidase alfa is indicated for people with Pompe disease and has 
been approved for the treatment of infantile-onset Pompe disease 
in children under eight years of age. Common side effects include 
pneumonia, respiratory complications, infections, and fever, while 
more serious reactions can include heart and lung failure and al-
lergic shock. The high cost of the drug has led to some health plans 
refusing to subsidize it for adults. In 2015, Lumizyme, a brand of 
alglucosidase alfa, was ranked as the costliest drug per patient, with 
an average charge of over $600,000.

Avalglucosidase Alfa (Nexviazym): Avalglucosidase alfa is a 
recombinantly produced acidic alpha-glucosidase, a glycogen-de-
grading enzyme used in the lysosomal storage disease Pompe dise-
ase, in which genetic alterations result in a deficiency of alpha-glu-
cosidase. Avalglucosidase alfa (Nexviadyme) is a recombinantly 
produced acid α-glucosidase, a glycogen-degrading enzyme that is 
insufficiently produced or has reduced activity in Pompe disease 
due to genetic alterations. Nexviadyme has been approved for long-
term enzyme replacement therapy in patients with Pompe disea-
se with late manifestation.Avalglucosidase alfa is administered as 
an intravenous infusion. The action of avalglucosidase alfa aims to 
compensate for the deficiency of acid α-glucosidase (GAA), which 
is required for the degradation of lysosomal glycogen, present in 
Pompe disease. Avalglucosidase alfa is a human recombinant acid 
α-glucosidase that provides an exogenous source of GAA. Avalglu-
cosidase alfa is a modification of alglucosidase alfa in which ap-
proximately 7 hexamannose structures, each containing 2 terminal 
fragments of mannose-6-phosphate (Bis-M6P), are conjugated to 
oxidized sialic acid residues on alglucosidase alfa. Compared with 
alglucosidase alfa, avalglucosidase alfa increases the number of 
M6P fragments 15-fold, allowing enhanced uptake into diaphragm 
and skeletal muscle. 

Cipaglucosidase Alfa/Miglustat (small molecule chapero-
ne): Cipaglucosidase alfa, also known as Pombiliti, is a medication 
used in combination with miglustat for the treatment of glycogen 
storage disease type II, also known as Pompe disease. It is a recom-

binant human acid α-glucosidase enzyme replacement therapy 
that provides an exogenous source of acid α-glucosidase. Common 
side effects include chills, dizziness, flushing, sleepiness, chest di-
scomfort, cough, swelling at the infusion site, and pain. Cipagluco-
sidase alfa was approved for medical use in the European Union in 
March 2023. In the UK, it is available under the Early Access to Me-
dicines Scheme. The Committee for Medicinal Products for Human 
Use (CHMP) of the European Medicines Agency (EMA) has recom-
mended the granting of a marketing authorization for Pombiliti for 
the treatment of Pompe disease. The applicant for this medicinal 
product is Amicus Therapeutics Europe Limited.

Gene Therapeutical Attempts of Pompe Disease (PD)

Another potential alternative to ERT for the treatment of PD is 
gene therapy. PD is a monogenic disorder, making it an ideal candi-
date for gene replacement strategies. In vivo gene therapy involves 
the administration of a gene delivery vector, either viral or non-vi-
ral, directly into the patient’s cells. This approach is currently being 
developed for the treatment of genetic disorders. Studies using 
Adeno-Associated Virus (AAV) and retroviruses have shown pro-
mising results for gene therapy in PD. AAV vectors can be admini-
stered into the bloodstream to indirectly target the muscle, liver, or 
multiple tissues. They can also be injected directly into the muscle 
or cerebral ventricles to target the central nervous system. Recent 
advancements in the production of AAV vectors and positive resul-
ts in preclinical studies have encouraged the use of AAV vectors 
with muscle-specific expression cassettes for the GAA transgene. 
This approach has shown efficient clearance of glycogen storage in 
muscle and improvement in muscle, cardiac, and respiratory fun-
ctions. However, one limitation of targeting muscles through the 
systemic route is the need for high doses of the vector, which can 
increase the risk of immunotoxicity due to the development of an-
ti-GAA antibodies. Another strategy for gene therapy in PD involves 
the stable expression of GAA in the liver. Adenoviral GAA transfer 
has been shown to mediate cross-correction in skeletal muscles, 
but the major limitation of this approach is the lack of long-term 
persistence of hepatic gene transfer. In the era of genome editing, 
another potential therapeutic strategy for PD is based on the CRI-
SPR/CAS technology. This system involves the delivery of Cas9 
protein and a RNA guide sequence to target and edit mutations 
in the genome. The gene can be edited through Non-Homologous 
End Joining (NHEJ) or Homology-Directed Repair (HDR). However, 
NHEJ-mediated CRISPR strategies would not be able to correct the 
site-specific mutations found in PD, where restoring a functional 
full-length GAA protein is preferred. Site-specific corrections throu-
gh HDR or other methods, such as base editors, would be necessary. 
However, HDR-mediated CRISPR strategies are not very efficient in 
muscle cells due to low expression of DNA repair proteins requi-
red for HDR. The development of a one-time curative treatment 
for Pompe disease is desired by both patients and clinicians. Gene 
therapy is being explored as a potential cure, following successful 
applications in other diseases. Multiple gene therapy approaches 
are being considered for Pompe, including ex vivo approaches 
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using transduced stem cells, in vivo gene therapy to directly cor-
rect muscles, and in vivo gene therapy to cross-correct muscles 
through transduced liver and other tissues. AVR-RD-03 is an ex vivo 
gene therapy approach that uses transduced bone marrow-derived 
stem cells to produce a fusion protein of hGAA and an IGF2 peptide 
for cross-correction of muscles. This approach is currently in the 
pre-clinical stage of development. In vivo gene therapy approaches 
using recombinant adeno-associated virus (rAAV) are also being 
evaluated. AAVB1-GAA has shown promising results in transducing 
and expressing hGAA in various muscles, including the heart, ga-
strocnemius, tongue, and diaphragm. AAV8-LDes, another in vivo 
gene therapy, has demonstrated broad hGAA expression in liver, 
cardiac and skeletal muscles, and the spinal cord. These approaches 
aim to produce therapeutic levels of hGAA for direct correction of 
muscles or cross-correction through systemic delivery. In vivo rA-
AV-based gene therapies for cross-correction of muscles are also 
being developed by various biopharmaceutical companies. These 
therapies involve systemic delivery of rAAV gene therapies to tran-
sduce the liver and other tissues to produce and secrete hGAA for 
cross-correction of muscles. Some of these gene therapies are also 
being developed for immunotolerization to minimize the impact 
of anti-GAA antibodies in patients receiving Enzyme Replacement 
Therapy (ERT). The success of these gene therapies depends on fac-
tors such as the serotypes of rAAV capsids used, promoters, codon 
optimization, and signal sequences for better protein expression 
and secretion. However, current in vivo gene therapy approaches 
may face challenges in terms of poor biodistribution, low intersti-
tial enzyme levels, and inefficient phosphorylation of hGAA, which 
limits its cellular uptake in skeletal muscles. It is uncertain if the-
se approaches can modulate carbohydrate processing to increase 
levels of bis-phosphorylated oligosaccharides on hGAA, which are 
necessary for cellular uptake. Therefore, high doses of rAAV may be 
required to compensate for these limitations and achieve glycogen 
clearance in skeletal muscles. Further research is needed to deter-
mine the efficacy and safety of these gene therapy approaches in 
higher species, including non-human primates and humans.

CRISPR-Cas9 Technology: In a study by Kan et al. was aimed 
to create a mouse model that recapitulates the human form of the 
disease caused by a specific mutation (c.1935C>A) in the GAA 
gene [1]. Researchers used CRISPR-Cas9 technology to introduce 
the c.1935C>A mutation into the mouse genome. They also crea-
ted a myoblast cell line carrying the same mutation [1]. The stu-
dy then goes on to describe the various molecular, biochemical, 
histological, physiological, and behavioural characteristics of the 
Gaaem1935C>A mice. The results showed that the Gaaem1935C>A 
mice had normal levels of GAA mRNA expression but significant-
ly reduced GAA enzymatic activity. They also exhibited increa-
sed glycogen storage in tissues and impaired autophagy. At three 
months of age, the mice showed skeletal muscle weakness and 
hypertrophic cardiomyopathy, but they did not experience pre-
mature mortality [1]. Overall, the Gaaem1935C>A mouse model 
closely resembles the human form of Pompe disease caused by the 
c.1935C>A mutation [1]. The researchers suggest that this model 

can be used to evaluate potential therapies for infantile-onset Pom-
pe disease, including personalized approaches that aim to correct 
the underlying genetic mutation and restore GAA activity [1].

Liver Gene Depot Therapy in LOPD: The study of Smith et 
al. published in 2023 focuses on the use of gene therapy with an 
Adeno-Associated Virus Serotype 8 (AAV8) vector to potentially 
replace Enzyme Replacement Therapy (ERT) in patients with La-
te-Onset Pompe Disease (LOPD) in a phase 1 study based on a liver 
gene depot [2]. The researchers conducted a 52-week open-label, 
single-dose, dose-escalation study to assess the safety and bioacti-
vity of gene therapy [2]. In the study, three patients received the 
first dose of the AAV8-LSPhGAA vector. After 26 weeks, the patients 
discontinued biweekly ERT based on the detection of elevated se-
rum GAA activity and the absence of clinically significant declines. 
Prednisone was administered as immunoprophylaxis for the first 
four weeks, followed by an 11-week taper [2]. The results showed 
that all subjects maintained sustained serum GAA activities ranging 
from 101% to 235% of baseline trough activity two weeks after the 
preceding ERT dose. There were no serious adverse events related 
to the treatment, and no subject experienced a decrease in transge-
ne expression due to anti-capsid T cell responses. Muscle biopsy at 
week 24 showed no significant changes in muscle glycogen content 
in two out of three subjects [2]. However, at week 52, muscle GAA 
activity for the cohort significantly increased. Based on these ini-
tial findings, the researchers concluded that AAV8-LSPhGAA gene 
therapy is safe and bioactive in patients with LOPD [2]. The study 
also demonstrated the safety of withdrawing ERT, the success of 
immunoprophylaxis, and supports further clinical development of 
AAV8-LSPhGAA therapy for Pompe disease [2].

Discussion
Pompe’s disease belongs as acid maltase deficiency to the 

group of glycogen storage diseases and is classified as type II of this 
group [3-14]. The gene is found on 17q25.3 chromosome region [1-
57]. This rare, prevalence of 1:18,702 births, hereditary metabo-
lic disease is predominantly manifested by muscle weakness and 
is therefore also classified as a myopathy [15-17]. The prevalence 
of the adult form is estimated at 1:57,000 and that of the infanti-
le form at 1:138,000 [3-14]. In Germany, at least 300 people are 
currently diagnosed; worldwide, it is assumed that 5,000-10,000 
people are affected. The disease is named after the Dutch patholo-
gist Joannes Cassianus Pompe (1901-1945), who first described the 
symptoms in 1932. The disease was classified as glycogen storage 
disease type II by G.T. Cori in 1954. In 1963, H.G. Hers discovered 
the absence of lysosomal α-glucosidase as the cause of the disease. 
The adult form was first described by A.G. Engel in 1969. As early 
as 1973, a therapeutic trial was conducted with alpha-glucosida-
se, which at that time was obtained from placenta. The disease can 
occur at all ages and is divided in three types, into the early (IOPD, 
infantile onset Pompe disease), the non-classic infantile PD without 
cardiac involvement and the late (LOPD, late onset Pompe disea-
se) courses depending on the severity and time of onset of the first 
symptoms [3-14]. In infants it is usually fatal in the first year of life 
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due to heart failure in the setting of hypertrophic cardiomegaly [18-
19]. The best results of treatment are found when treated in the 
first days of life and diagnosed very early [3-14]. It is usually fatal 
in the first year of life due to heart failure in the setting of hyper-
trophic cardiomegaly [18-19]. The infantile form begins before 3 
months of age with severe muscle hypotonia, weakness in sucking 
and swallowing, hypertrophic cardiomyopathy, and progressive 
liver enlargement [1-57]. The adult form is characterized by pro-
gressive limb-girdling myopathy that begins in the lower limbs and 
also affects the respiratory problem. Respiratory problems may be 
the first symptom. A whole spectrum of intermediate forms exists 
between these two extremes. The diagnosis is confirmed by the de-
tection of the enzyme deficiency in fibroblasts, lymphocytes, dried 
blood or in chorionic villus sampling [1-57]. Differential diagnoses 
of the infantile form are primarily Werdnig-Hoffmann disease and 
metabolic or idiopathic cardiomyopathy. When the disease has a la-
ter onset, it is reminiscent of Danon disease (see there). Differential 
diagnoses of the adult form are the other myopathies. If both mu-
tations have been investigated in the patient, heterozygote testing 
can be performed in the family and prenatal diagnosis in further 
pregnancies of the mother. In very rare cases, prenatal diagnosis is 
complicated by pseudo deficiency alleles. A complex transposon, a 
transponible element insertion as a novel cause of Pompe disease 
was described on intron 15 recently [20]. 

The development of next-generation ERTs and gene therapies 
for Pompe disease is crucial in order to address the limitations of 
current treatments and provide more effective options for patients 
[1,2,21-37]. These advancements aim to overcome challenges such 
as poor distribution to muscles, reduced muscle uptake, interferen-
ce from antibodies, and limited penetration of the blood-brain bar-
rier. Promising developments have been made with neoGAA and AT-
GAA, which have reached the pivotal stage of clinical development. 
The breakthrough therapy designation granted to AT-GAA by the 
FDA indicates its potential for substantial improvement over exi-
sting therapies [1,2,21,24-26,33,35]. Gene therapy, as a single-ad-
ministration curative treatment, holds great promise for Pompe 
disease based on preclinical data [1,2,21,24-26,33,35]. However, 
there are still significant challenges and questions that need to be 
addressed. These include replicating preclinical efficacy in humans, 
ensuring durable transgene expression, and establishing long-term 
safety and efficacy. Clinical studies comparing gene therapy to cur-
rent standard of care and demonstrating long-term safety and gene 
expression will be necessary [1,2,21,24-26,33,35]. Additionally, the 
manufacturability of rAAV gene therapies at large scale and the im-
provement and standardization of analytical assays will need to be 
addressed.

Therapy with pluripotent stem cell lines shows compromising 
results in the treatment of Pompe disease and further research is 
necessary to produce clearer data towards efficacy and tolerability 
[12,32,33,38]. 

The biopharmaceutical industry plays a crucial role in develo-
ping effective medicines and providing treatment options for rare 

genetic diseases like Pompe. It is unlikely that one treatment will 
be optimal for all patients, and different factors such as tolerabi-
lity, convenience, and individual circumstances may influence tre-
atment choices. Combining therapies may also be considered for 
optimal outcomes, such as using next-generation ERTs for periphe-
ral symptoms and intrathecal administration of gene therapy for 
neuronal aspects. Continual development of more effective thera-
pies is necessary to properly manage Pompe disease and provide 
treatment options for patients [39-57].
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