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Abstract

In the 21st century, Artificial Intelligence (AI) is being increasingly studied and developed for medical applications, Including 
Electrocardiogram (ECG) interpretation. Despite promising results, there is no consensus in the medical community regarding the 
reliability of AI or its potential to become standard of care when it comes to ECG interpretation. This review aims to examine the 
evolution of AI in ECG interpretation, starting from basic QRS identification to surpassing Cardiologists in diagnosing arrhythmias. 
Additionally, we explore the role of AI in diagnosing diseases outside of arrhythmia and its ability to predict response to cardiac 
treatments. Finally, we discuss the challenges AI must overcome before it can move beyond the realm of research and become widely 
accepted as the standard of care.
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Introduction
Since the advent of the first single-lead ECG in 1887, it has been 

the most common diagnostic test for arrhythmia [1]. While ECG in-
terpretation is a mandatory part of any medical curriculum, it is a 
challenging to do so accurately, with great inter-clinician variability 
[2]. Since the 1950s, efforts have been made to automate ECG inter-
pretation through computers [3]. However, as of today computer 
interpretations of ECGs are only used as an adjunct, not substitute, 
for physician interpretation given the rates of error [4]. No doubt, 
computers still struggle to accurately interpret ECGs, especially cer-
tain arrhythmias.

In the past decade, the field of Artificial Intelligence (AI) has 
experienced a meteoric rise [5]. The use of AI in diagnostic test-
ing involves computational extraction of a pattern from a training 
dataset and applying it to make predictions about unseen data. 
Machine Learning (ML) is a subset of AI where the computer fits 
data from a training set into statistical models, without any external 
human definition, by minimizing prediction error (“cost function”) 
compared to traditional probability and statistics, especially in 
non-linear models. Deep Learning (DL) is a subset of ML that mim-
ics the human nervous system through linear functions (“nodes”)  

 
arranged in series (“layers”). During training, each node is thought 
to represent a simple feature of the training data; there are many 
layers in a DL model hence the term “deep”. The main advantage of 
DL compared to ML lies in its ability to process non-numerical data 
such as images [6]. This makes DL an especially attractive option to 
study ECGs.

Arrhythmia Diagnosis
Attempts to study arrhythmia via AI date back to last century. 

In 1993, Edenbrandt, et al. [7]. used 500 ECG ST segments to train 
an artificial neural network to identify ST changes such as ST eleva-
tion. The network was able to characterize ST elevation much more 
accurately than conventional criteria but fell short when compared 
to an experienced cardiologist [7]. More promising results were 
delivered in 2007 when Yu, et al. used wavelet transformation and 
probabilistic neural networks to classify ECG beats, including bun-
dle branch block and premature atrial/ventricular rhythms, with 
99.65% accuracy. However, the study has drawbacks including a 
small sample size of 23 ECGs and lack of comparison with conven-
tional criteria or cardiologist interpretation [8].
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A large-scale study was done in Brazil in 2018 using 1,557,415 
ECGs in Brazil were used to train a deep neural network to detect 6 
different rhythms. The model’s accuracy was represented by the F1 
score. The DL model was able to outperform emergency residents 
and final year medical students. It even performed better than car-
diology residents in 5 out of 6 rhythms [9]. In a landmark study by 
Hannun, et al. [10], a deep neural network was trained with 91,232 
single-lead ECGs to identify rhythms including normal sinus, atrial 
fibrillation, AV block, and ventricular tachycardia. The gold stan-
dard was a panel of expert cardiologists who agree on a diagnosis. 
The model performed extremely well, with an AUC of 0.97, which 
illustrates almost perfect arrhythmia identification. This model was 
found to perform similarly to individual cardiologists in diagnos-
tic accuracy and made similar mistakes as cardiologists [10]. This 
study confirmed that our current DL models can attain the accuracy 
of Cardiologists for certain arrhythmia diagnoses.

Identification of Biosignature for Disease 

In addition to interpreting ECG rhythms, DL models are also 
used to identify the biological signature of silent diseases such as 
asymptomatic cardiomyopathy. At the Mayo Clinic, a convolutional 
neural network was trained to identify patients with reduced heart 
function, defined as left ventricular ejection fraction (LVEF) ≤35%, 
based on ECGs alone. The model was tested on 52,870 patients, with 
sensitivity and specificity over 85%. Notably, the “false positives” 
identified by the neural network were found 4.1 times more likely 
to develop cardiomyopathy in the following 5 years compared to 
true negatives [11]. This revealed that the model identified an ECG 
biosignature of early cardiomyopathy, which can be used to predict 
a drop in ejection fraction, allowing initiation of early preventative 
treatment. Being able to predict a reduced ejection fraction based 
on a readily available test such as ECG can transform the way we 
practice medicine, since ECGs are far more available than echocar-
diograms [12]. This application opens the door for ECG to become 
a cheap, accessible tool for asymptomatic patient LVEF screening 
and monitoring.

Prediction of Treatment Response
DL models can also be used to predict outcomes as well as 

responses to specific patient interventions. One such challenge is 
selecting patients who would benefit from a cardiac device implan-
tation called Cardiac Resynchronization Therapy (CRT). This is a 
special pacemaker that can pace both sides of the heart to provide 
synchronous contraction [13]. However, identifying patients who 
would benefit from this is challenging, as nearly 1/3 of patients do 
not respond to CRT, with response usually defined as echocardio-
graphic evidence of reverse remodelling of the heart such as recov-
ery of LVEF [14]. In 2023, Wouters, et al. from Utrecht used a DL 
model predict response to CRT using a pre-procedure ECG. In fact, 
investigators were also able to predict the risk of requiring a heart 
transplant, left ventricular assistive device, and death in heart fail-
ure patients. They used an DL-based autoencoder that transforms 
ECGs into 21 numbers that are used in the algorithm to calculate 

patient outcomes. The model significantly outperformed current 
methods of screening patients for CRT therapy [15]. Investigators 
also examined how this model was able to make its predictions and 
found that the ST segment in addition to the QRS holds a lot of prog-
nostic information. This showcases the potential of DL to turn ECG 
into a treatment-response prediction tool.

Challenges to Overcome
The operationalization of deep learning models in ECG inter-

pretation poses several challenges at a full scale. Many of the mod-
els published face limitations in achieving the performance neces-
sary for practical clinical applications. Take, for instance, a model 
designed to screen ECGs for left ventricular ejection fraction, which 
exhibited an alarming tendency to overcall reduced heart function 
in 66% of cases. Additional techniques can be used to boost perfor-
mance to a clinically acceptable range. To enhance the reliability 
and applicability of neural networks, it is crucial to undergo ex-
ternal validation using independently generated datasets as a key 
developmental step. Explain ability also emerges as a paramount 
factor in the development of deep learning tools. Investigators must 
employ techniques like LIME and SHAP to understand the deci-
sion-making process of the model. Without a clear understanding 
of how the neural network operates and which features it relies 
on, clinicians are unlikely to place trust in its predictions. Each DL 
model intended for practical use must confront and resolve these 
pivotal challenges.

Conclusion
The short answer to the question of whether we can place trust 

in AI to read our ECGs is yes, but not yet. The field of AI has made 
significant strides, having reached the performance and some-
times outperforming medical professionals in certain applications. 
However, for it to be a standard of care, relying solely on AI as the 
ECG reader requires extensive validation across multiple centres 
in different countries. Such models must also pass the hurdles of 
regulatory approval, although similar technologies for arrhythmia 
detection are already getting approved by the Food & Drug Ad-
ministration [16]. For now, clinicians should be comfortable with 
employing AI as a more advanced version of existing computerized 
interpretations of ECGs - as an adjunct and reference. Aside from 
ECG interpretation, AI can creatively turn the cheap, accessible test 
that is the ECG into a screening tool for conditions that often re-
quire more expensive or invasive testing for prediction of patient 
outcomes and responsiveness to treatment. The future of electro-
physiology, cardiology, and medicine will be forever, if not already 
changed by AI.
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