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Abstract

Lung cancer, the leading cause of cancer-related mortality, prompts innovative strategies for prognosis and personalized 
treatment. This review delves into the evolving landscape of advanced Non-Small Cell Lung Cancer (NSCLC) treatment, emphasizing 
the integration of Artificial Intelligence (AI) to process vast diagnostic and treatment data. AI’s synergy with TNM staging proves 
pivotal, linking histopathologic images to survival outcomes. Highlighting AI’s role in understanding lung cancer prognosis and 
predicting treatment responses, studies showcase its potential in histopathologic image analysis, radiomics, and genomic features. 
Findings include successful differentiation of survival outcomes in adenocarcinoma and squamous cell carcinoma, predicting 
responses to tyrosine kinase inhibitors and immunotherapy, and developing deep learning radiomic biomarkers for tumor mutational 
burden prediction. AI discerns prognostic details within sub-genotypes and also assists in predicting EGFR and KRAS mutations. 
Encompassing histopathologic image analysis, radiomics, and predictive modeling, the review highlights AI’s multifaceted utility 
in lung cancer management. Studies collectively affirm AI’s potential to advance prognostic assessments and refine personalized 
treatment approaches. The implications extend beyond the current landscape, suggesting transformative impacts on future clinical 
capabilities. 
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Radiomic Biomarker

Introduction
Lung cancer stands as the primary cause of cancer-related 

mortality, accounting for 1.8 million deaths in 2020 [1]. However, 
the landscape of treatment for patients with advanced Non-
Small Cell Lung Cancer (NSCLC) has expanded significantly with 
the emergence of precision medicine, offering a diverse array 
of treatment options informed by genetic insights [2]. Amidst 
the extensive data generated during diagnosis and treatment, 
the integration of Artificial Intelligence (AI) proves pivotal in 
streamlining the synthesis of extensive datasets from varied 
sources, including imaging scans, electronic health records, and  

 
genomic profiles, thereby contributing to the field of oncology 
[3,4]. The progress in lung cancer treatment entails tailored 
options for each pathologic subtype. The prognosis of this intricate 
disease is shaped by various factors, with TNM staging playing 
a crucial role in stratification, decision-making, and prognosis 
assessment [5]. Within this framework, the integration of artificial 
intelligence with TNM staging presents a specific avenue, notably 
in linking histopathologic images with survival outcomes [6]. 
In the management of lung cancer, an important objective is 
understanding the overall prognosis of the disease and predicting 
its response to different therapies. Artificial intelligence assumes a 
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critical role in achieving these objectives, enhancing our capability 
to predict lung outcomes and treatment responses.

Discussion
In a study, Yu, et al. analyzed 2,186 histopathology whole-slide 

images from lung adenocarcinoma and squamous cell carcinoma 
patients, employing machine learning to extract and identify 9,879 
quantitative image features. The study successfully differentiated 
shorter-term from longer-term survivors in stage I adenocarcinoma 
(P<0.003) and squamous cell carcinoma (P=0.023) within the 
TCGA dataset, with validation in the TMA cohort reinforcing its 
predictive capabilities (P<0.036 for both tumor types). The findings 
underscore the potential of automatically derived image features in 
precision oncology for predicting lung cancer patients’ prognoses 
[7]. In a study by Li, et al. Convolutional Neuronal Networks 
(CNN) were used to analyze histopathologic images, revealing a 
significant association between the interaction strength of tumor 
cells and stromal cells and a favorable prognosis (P=0.05) [8]. AI 
continues to contribute to advancing prognostic insights through 
lung cancer radiomics [9,10]. CT-based radiomics nomograms 
can predict lymph vascular invasion and Overall Survival (OS) in 
NSCLC patients and stratify patients into low risk and high-risk 
group which can potentially aid in guiding personalized treatment 
strategies before surgery [10]. PET-CT scans have also stratified 
patients using hand-crafted radiomics [11] and deep learning 
features [12]. In another study, the integration of genomic features 
with radiomics and clinical data demonstrated a remarkable 
improvement in model performance. The Area Under the Receiver 
Operating Characteristic Curve (AUROC) increased from 0.79 in 
clinical to 0.87 when incorporating radiomic and genomic features. 
This emphasizes AI’s capacity to establish meaningful relationships 
between imaging findings and molecular characteristics of tumors 
[13,14]. Advancement in Tyrosine Kinase Inhibitors (TKI) and 
immunotherapy highlights the significance of molecular tumor 
characterization in enabling tailored precision therapy [15]. 
A machine learning model deep learning semantic signature 
improved survival by predicting tumor progression risk after 
EGFR-TKI therapy in Stage IV EGFR Variant-Positive NSCLC [16]. 
In a study, Radiomics was utilized to predict treatment response in 
advanced NSCLC patients receiving Immune Checkpoint Inhibitors 
(ICIs). The CT scan radiomic characteristics employed in the study 
demonstrated the capability to predict treatment response and 
survival [17]. In another study, the researchers utilized machine 
learning to assess changes in radiomic texture (DelRADx) on CT 
scans before and after ICI therapy in Non-Small Cell Lung Cancer 
(NSCLC) patients. The DelRADx patterns successfully predicted 
response to ICI therapy and OS. These findings suggest that DelRADx 
could serve as a valuable tool for identifying early functional 
responses in NSCLC patients undergoing ICI therapy [18].

In the study by Moreno, et al. the challenge of predicting EGFR 
and KRAS mutations in lung cancer is addressed using an ensemble 
approach, including Selective Class Average Voting (SCAV). Despite 
a small dataset, the method significantly enhances the performance 
of both machine learning models and CNNs. Improved sensitivity 

and AUC are observed for EGFR mutation prediction, reaching 
an AUC of 0.846 in the deep learning approach. Similar notable 
improvements are noted for KRAS mutation prediction in both 
machine learning and deep learning models. The study highlights 
the efficacy of ensembles, particularly SCAV, in accurate mutation 
prediction from small image datasets, with implications for future 
application with larger datasets to enhance clinical capabilities 
[19]. In the study conducted by Kureshi et al., machine learning 
techniques, including Support Vector Machine (SVM) and decision 
tree classifiers, were utilized to assess multiple factors in predicting 
tumor response in EGFR-positive NSCLC patients treated with 
erlotinib or gefitinib. The resulting data-driven decision support 
model exhibited a predictive accuracy of 76% and an AUC of 0.76 
[20]. In this study by He, et al. a deep learning radiomic biomarker 
(TMBRB) was developed from CT images for predicting Tumor 
Mutational Burden (TMB) in advanced Non-Small-Cell Lung Cancer 
(NSCLC). By using a 3D-densenet model and 1020 deep learning 
features, TMBRB effectively differentiated between High-TMB and 
Low-TMB patients, demonstrating robust performance in both the 
training (AUC: 0.85) and test cohorts (AUC: 0.81). Its predictive 
capabilities extended to stratifying patients for immunotherapy 
response with different overall survival and progression-free 
survival [21]. The scope of AI extends to discerning prognostic 
details within sub-genotypes of identified mutations. In a study 
focused on early-stage lung adenocarcinoma, researchers developed 
a fusion-positive tumor prediction model that proficiently predicts 
the TMB status and identifies EGFR/TP53 mutations. The median 
AUC values for these predictions were 0.606, 0.604, and 0.586, 
respectively [22]. Additionally, some machine learning models 
successfully predicted EGFR and KRAS mutations based on radiomic 
features [23,24]. Immunotherapies targeting PDL-1 and PD-1 have 
improved survival in a subset of patients with advanced lung cancer 
[15]. A study demonstrated that radiomics markers derived from 
baseline CT scans undergoing PD-1/PD-L1 inhibitor treatment for 
advanced NSCLC patients can help in discerning patients prone 
to hyper progression [25]. In another study, the integration of AI 
has facilitated the prediction of tumor histology and assessment 
of PD-1/PL-L1 status, contributing to predicting responses to 
immunotherapy. In a study of 194 patients undergoing PD-1/PD-
L1 inhibitor treatment for stage IIIB-IV NSCLC, researchers utilized 
baseline PET/CT data and developed multiparametric imaging 
histological signature models, accurately predicting the likelihood 
of sustained clinical improvement from immunotherapy [26].

Conclusion
In summary, the integration of Artificial Intelligence into 

lung cancer management holds significant promise for advancing 
prognostic assessments and refining personalized treatment 
approaches. The discussed studies, spanning diverse methodologies 
such as histopathologic image analysis and predictive modeling, 
collectively demonstrate the multifaceted utility of AI.
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