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Introduction
The field of Large Vision-Language Models (LVLMs) has expe-

rienced significant advancements in recent years. The rapid devel-
opment of vision-language methods significantly enhance perfor-
mance across various domains, which have reshaped the landscape 
of AI community. LVLMs leverage the sophisticated capabilities of 
Large Language Models (LLMs), which are instrumental for robust 
language generation, zero-shot transfer capabilities, and In-Context 
Learning. Thus, the studies of LVLMs aim to improve the accuracy 
and generalize ability of multimodal pre-training as well as aligning 
their output with human cognitive processes. Among recent break-
throughs, exemplified by models such as GPT-4(Vision) [1] and 
Gemini [2], has marked a new era in multimodal understanding and 
generation. Notable examples include

Flamingo [3], BLIP-2 [4], LLaVA [5], MiniGPT-4 [6], VideoChat 
[7] and CogVLM [8]. These advancements highlight the growing in-
terest in developing models capable of processing both vision-lan-
guage input and output, leading to innovations in image and text 
content generation.

This mini-review provides a succinct yet comprehensive over-
view of the architecture, training procedures, and most recently ad 

 
vancements of LVLMs, highlighting their role in shaping next-gen-
eration AI technologies.

Exploring Model Architecture of Large Vi-
sion-Language Models

The model architecture of LVLMs of recently researches, en-
compass a sophisticated architecture that includes several critical 
components:

Visual Encoder

The Visual Encoder is composed with the ability of encoding 
inputs from vision modality like images and videos into corre-
sponding feature sets. This process involves utilizing off-the-shelf 
pre-trained encoders like NFNet-F6 [9], ViT [10], CLIP [11] and 
EVA-CLIP [12].

Visual Projector

The component of visual projector aligns the encoded features 
from vision modality with the text feature space. It often employs 
linear projectors, multi-layer perceptrons (MLP), or more complex 
mechanisms like Q-Former and P-Former to efficiently integrate 
features.
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LLM Backbone

The LLM Backbone in LVLMs serves as the core component, 
primarily focused on processing vision-language modalities and 
facilitating logic reasoning for specific tasks based on text prompts. 
The backbone includes widely recognized models like Flan-T5 [13], 
Chinchilla [14], PaLM [15], ChatGLM [16], Qwen [17], OPT [18], 
LLaMA [19], and other language models.

Output Projector

The output projector maps the embeddings from the LLM Back-
bone into features that are comprehensible to the subsequent Mo-
dality Generator. It often employs MLP for this translation process.

Vision Generator

The Vision Generator is tasked with producing outputs in 
specific visual tasks, which typically utilizes diffusion models like 
Stable Diffusion [20] for image synthesis and Zeroscope for video 
synthesis.

Training Procedures of Large Vision-Language 
Models

In the domain of recent LVLMs, the training process is primarily 
bifurcated into two critical stages:

Pre-Training

In the pre-training process, the large-scale Image-Text datasets 
like [21] and [22] are usually leveraged to learning generalized 
vision-language knowledge. The weights of Visual Projector and 
Output Projector are trained to align the embeddings of vision-lan-
guage modalities. The procedure of pre-training of LVLMs empha-
sizes on the modality alignment of visual and text domain, where 
the parameters of visual encoder, LLM and visual generator are fro-
zen. Therefore, the amount of pre-training weights are about 2% of 
the entire pipeline.

Instruction-Tuning

The procedure of instruction-tuning fine-tunes pre-trained 
LVLMs with instruction-formatted datasets, the ability of general-
ization and zero-shot reasoning is thereby enhanced. Among recent 
studies, the process of instruction-tuning mainly involves the strat-
egy of Supervised Fine-Tuning (SFT) and Reinforcement Learning 
from Human Feedback (RLHF) [23]. SFT intends to convert part of 
the training data of pre-traineing into an instruction-aware format, 
such as visual Question-Answer (QA). After that, RLHF is proposed 
to further fine-tuning of the model, which plays a critical role in 
refining LVLMs by aligning them with human intents or prefer-
ences. This dual approach of SFT and RLHF of the instruct-tuning 
process is vital for the development of LVLMs that are attuned to 
human-like communication and understanding.

Evolving Large Vision-Language Models
The landscape of state-of-the-art LVLMs reflects a diverse ar-

ray of models, each contributing uniquely to the advancements in 
the field. Among LVLMs of recent years, Flamingo [3] is a series 
of Visual Language Models adept at processing interleaved visual 

data and text to generate free-form text outputs. BLIP-2 [4] offers 
a resource-efficient framework with a lightweight Q-Former, which 
is capable of zero-shot image-to-text generation with natural lan-
guage prompts. LLaVA [5] is known as the visual version of LLa-
MA, which transfer Instruction-Tuning techniques to multimodal 
domains. Replicating the capabilities of GPT-4, the MiniGPT-4 [6] 
effectively adopts a streamlined approach aligning a pre-trained 
vision encoder with the LLM. VideoChat [7] is an efficient chat-cen-
tric LVLM for video understanding dialogue, setting new standards 
for future research in this area. CogVLM [8] is proposed to bridge 
the gap between pre-trained language models and image encoders 
with a trainable visual expert module. The model enables deep fu-
sion of vision and language features., which has achieved state-of-
the-art performance on various cross-modal benchmarks.

Conclusion
This review comprehensively explored the realm of Large Vi-

sion-Language Models (LVLMs), highlighting their sophisticated 
integration of visual and linguistic modalities. The intricate archi-
tecture and strategic training methodologies underscore their po-
tential in advancing vision-language understanding. As LVLMs con-
tinue to evolve, they are set to redefine the landscape of artificial 
intelligence, bridging the gap between technological capabilities 
and complex real-world data interactions.
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