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Physics-Informed AI Infers Ligand-Induced Folding in 
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Conformational Plasticity in Drug Design
Predicting ligand-induced protein folding, the structural adap-

tation of a target to a drug ligand, is one of the greatest challenges 
today in drug design [1]. The field has undergone a revolution due 
to the introduction of AlphaFold [2,3], the most accurate predictor 
of target structure from sequence. Like all machine-learning tools, 
AlphaFold is limited by the available structural databases. The 
protein structures in drug-target associations involving new com-
pounds and targets are significantly under-represented in structur-
al databases. This is because ligand associations often involve some 
structural deficiencies in a target protein.

This situation can be mitigated with physics-informed AI [4], 
whose purpose is to compensate for regions of data space that are 
poorly represented. Structural plasticity corresponds to regions of 
conformational diversity. Such regions are under-represented in 
repositories of structural data. A physical model that accounts for 
such plasticity is the dehydron [5], a backbone hydrogen bond un-
shielded from solvent. Dehydrons are naturally under-represented 
in structural data bases since they lie in the tails of stability distri-
butions of hydrogen bonds. Using a combination of structural biol-
ogy and physical chemistry concepts, dehydrons have been identi  

 
ed in protein structures [5-7]. The biophysics concept of dehydron 
provides a way to compensate for the lack of diversity in existing 
protein-structure data bases, as we describe here.

Plasticity does not mean disorder. However, software to pre-
dict disorder, such as PONDR [8], can be used to predict plasticity, 
by considering regions where there is a transition from order to 
disorder. Such regions are rich in dehydrons [9], where structural 
plasticity is likely, and have been dubbed the so-called structural 
twilight zones [9,10]. Due to their solvent exposure, dehydrons 
support plasticity because they are less strong and stable than well 
shielded backbone hydrogen bonds.

Structural plasticity provides significant targets for drug de-
signers. For example, most signaling proteins have regions of plas-
ticity, storing conformational entropy that makes their interactions 
ephemeral and weak, and hence difficult to target. Moreover, al-
most two-thirds of enzymes show conformational changes on bind-
ing their ligands [1].

In a previous paper [11], a proposal was made to augment 
AlphaFold’s internal data representation to allow for the incorpo-
ration of dehydron patterns. Here we suggest how PONDR and Al-
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phaFold can be combined in a pipeline to indicate where structural 
plasticity may exist. These limited regions of plasticity can then be 
optimized to suggest different structures that possess significant 
affinity for drug leads. PONDR and AlphaFold have been used to-
gether before, and they predict similar disordered regions [12], but 
PONDR has not been used before to indicate plasticity.

Alphafold2 Misses the Targetable Structure
(Figure 1) The following example [1] illustrates the need for 

integrating plasticity signals into the structural inference of pro-
tein-ligand complexes. AlphaFold2 predicts correctly the unbound 

structure of the multi-domain protein Pro X from Archaeon globus 
fulgidus at RMSD 3.8 (PDB ID 1SW5). But the bound state (PDB ID 
1SW1) differs substantially from the prediction. Figure 1 depicts 
a region of high plasticity that enables the binding event. Not sur-
prisingly, there are dehydrons (marked in green) buttressing the 
bound-state (Figure 1(b)), a conformation not seen in the top Al-
phaFold2 predictions (Figure 1(a)). The predicted free conforma-
tion in the plastic zone is more rigid as evidenced by a higher num-
ber of water-shielded backbone hydrogen bonds, shown as grey 
lines. This is expected by the under-representation of dehydrons in 
structural databases.

Figure 1: The plastic parts of the multi-domain protein ProX from Archaeoglobus fulgidus. (a): the apo state, PDB ID 1SW5 (b): the bound 
state PDB ID 1SW1. A simplified α-carbon representation of the backbone (blue tubes) is presented. Amide-carbonyl hydrogen bonds are 
indicated as lines joining the paired residues, grey for well-shielded hydrogen bonds and green dehydrons.

A signal for plasticity can be inferred from disorder scores of 
the sequence. In Figure 2 we give the PONDR disorder score for the 
sequence of PDB ID 1SW5/1. Marked by a box in Figure 2 is the 
region A205-Glu to A213-Pro of plasticity determined by a sharp 

transition between order and disorder. These twilight regions are 
limited in extent, and this allows an approach to structural optimi-
zation of drug targets using simpler, exhaustive conformation-sam-
pling strategies.

Figure 2: The PONDR score (13 July 23 download from http:www.pondr.com) [8] with the plasticity region A205-A213 highlighted.
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Filling The Gaps in Structural Databases
Thus we propose a hybrid, physics-informed, AI approach to 

structure prediction. We use homology modeling (AlphaFold2) to 
predict a base structure. We then find the twilight zones of possible 
plasticity in this base structure, e.g., by using PONDR. The resulting 
small number of plastic deformations of the base structure can then 
be examined exhaustively to look for structures of interest, that can 
provide complexes of pharmacological impact. Our hybrid scheme 
uses an enhanced view of protein structure that splits proteins into 
three categories:

a) elastic (structured),

b) plastic, and

c) disordered (unstructured),

where the plastic zones are identified as twilight zones, using 
the dehydron concept. For proteins whose plastic zones are small, 
their possible structures are easily examined for relevant structur-
al modifications. This translation of a physical concept into a com-
putational algorithm will broaden the technological base for drug 
discovery.

Local Optimization
Since the plasticity regions are small, simple optimization 

schemes can be used to exhaustively search out all possibilities. 
One approach uses the Ramachandran Basins [13] to predict folded 
structure. These authors were able to fold correctly the villin head-
piece, a 36-residue protein. Thus a much smaller region, such as a 
plastic region, can be done in reasonable time.

A major determinant of protein structure is the Backbone Hy-
drogen Bond (BHB) network. Although unstructured regions will 
often not have any BHBs, we assume that a plastic region has BHBs. 
We can describe the BHB network by a matrix M, indexed by resi-
due number, with non-zero values where there is a BHB linking two 
residues. For the two structures 1SW1 and 1SW5, the correspond-
ing BHB matrices for the plastic region indicated in Figure 2 are 
given in equations (1) and (2):

1 1

205 206 207 208 209 210 211
205 0 0 1 0 0 0 0
206 0 0 0 0 1 0 0
207 1 0 0 0 1 0 0
208 0 0 0 0 0 0 0
209 0 1 1 0 0 0 0
210 0 0 0 0 0 0 0
211 0 0 0 0 0 0 0

SWM

 
 
 
 
 
 =  
 
 
 
 
  

 

(1)

  

1 5

205 206 207 208 209 210 211
205 0 0 1 0 0 0 0
206 0 0 0 0 1 0 0
207 1 0 0 0 0 0 0
208 0 0 0 0 0 0 0
209 0 1 0 0 0 0 1
210 0 0 0 0 0 0 0
211 0 0 0 0 1 0 0

SWM

 
 
 
 
 
 =  
 
 
 
 
  

 

(2)

These matrices can be viewed as constraints on the protein 
structure. In carrying out structural optimization, such constraints 
could be used to limit the search space. Further constraints include 
potential clashes for the remainder of the structure that remains 
unchanged, due to rotations that occur at the ends of the plastic 
region.

The search space can be further reduced by reducing the num-
ber of BHB matrices considered. Typical constraints on the BHB 
matrices M include that Mij = 0 for |i-j| ≤1. By definition, they are 
symmetric. Thus for the matrices given in equations (1) and (2), the 
set of nonzero possibilities corresponds to a lower-triangular 5x5 
matrix. The number of such matrices with only one nonzero is 15. 
Simple combinatorics yields the number of matrices with n nonze-
ro as a function of n. Although this grows very fast with n, for small 
n it is a manageable set of possible BHB matrices.

If we are using Ramachandran basins in the optimization, the 
given BHBs give restrictions on the Ramachandran basins for the 
residues with nonzero BHB matrix entries. Putting together all of 
these constraints yields a manageable problem to solve computa-
tionally.

Data and Software Availability
The analysis in this paper was done on PDB files 1SW5 and 

1SW1, both available at the Protein Data Bank, https://www.rcsb.
org. Figure 1 was produced by Yapview, available at

https://sourceforge.net/projects/protlib/files/yapview/.

Figure 2 was produced by PONDR, available at http://www.pon-
dr.com.
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