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Abstract

The exosomes selectively deliver their loaded bioactive substances to adjacent cells or their distal sheath target tissues, and 
regulate immune response, inflammation, tumor growth and infection in a local or a long-distance. The exosomes-mediated Low 
Density Lipoprotein Receptor (LDLR) mRNA delivering could restore LDLR expression and reversing high serum low density 
lipoprotein cholesterol (LDL-C) levels. Familial hypercholesterolemia (FH) which is one kind of an autosomal dominant genetic 
diseases, was primarily caused by loss-function mutations in the LDL receptor gene. Homozygous FH (HoFH) was characterized 
with extremely elevated LDL-C levels, which was hard to cure due to few effective medications available for it. LDL receptor is 
responsible for clearance the majority of serum LDL-C. Employing LDL receptor mRNA-loaded exosomes maybe serving as a critical 
vehicle for improving HoFH. 
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Introduction
Exosomes secreted by various of cells are characterized with 

lipid bilayer-enclosed extracellular (EVs) in a size range of 30 to  

 
150 nm diameter, which contain various bioactive substances, such 
as DNA, RNA, mRNA, protein, lipid and so on. (Figure1).

Figure 1: Composition of exosomes. Exosomes are secreted by mammalian cells and are widely distributed in cellular systems. They are 
composed of various proteins such as antigen presentation, adhesion molecule, other transmembrane proteins and so on. Exosomes also 
contain cholesterol and nucleic acids, such as mRNA, miRNA, and DNA in their lumen.
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The exosomes were firstly found in the supernatant of sheep 
erythrocyte cultured in vitro, lately they were found to have the 
ability of transferring information, acting as a natural signal carri-
er, through selectively deliver bioactive substance to adjacent cells 
or their distal sheath target tissues [1,2]. More interestingly, muta-
tion genes in diseased cells were corrected by exosomes in the way 
of introducing genetic material or edition tools [3], which maybe 
brings hopeful for previously incurable diseases, such as heredi-
tary, cancer, and autoimmune diseases [4]. Familial Hypercholes-
terolemia (FH) is mainly caused by a single pathogenic mutation 
in the Low-Density Lipoprotein Receptor (LDLR) or its associated 
genes [5], which belongs to one of easily atherogenic metabolic dis-
orders [6]. Employing LDL receptor mRNA-loaded exosomes may 
be employed to provide novel ideas for the clinical treatment of FH.

Familial Hypercholesterolemia: From Pa-
thophysiology to Current Treatment
FH, also known as familial hyper-β-lipoproteinemia belonging to 
one kind of an autosomal dominant genetic diseases [7], is one 
of high risks leading to atherosclerotic cardiovascular, and can be 
effectively improved the survival rate by early screening and drug 
therapy [8]. FH is possessed with the features including familial 
aggregation of disease onset, significant increase in serum LDL-C 
level, and early occurrence and rapid progression of atheroscle-
rotic cardiovascular disease [9-11]. FH is caused by dysfunctional 
mutations in the LDL receptor gene [12-14] which impairs serum 
Low-Density Lipoprotein (LDL) clearance. FH was primarily divid-
ed into heterozygous FH (HeFH) and homozygous FH (HoFH) [15]. 

Although statins [16], ezetimibe (a cholesterol absorption in-
hibitor) [17], and PCSK9 inhibitors [18] have some beneficial effects 
in HeFH, few medicinations are effective in HoFH [19]. Lipid-low-
ering treatment with plasma or LDL apheresis complementary is 
kind of an invasive and expensive treatment to FH patients, which 
requires maintenance therapy weekly or every 2 weeks [20]. Liver 
transplantation can restore LDL receptor to clearance apoB-con-
taining lipoproteins, which requires lifelong immunosuppression 
for FH patients against organ rejection [21]. Therefore, transferring 

hepatocyte-directed LDLR gene may be a potential strategy for the 
treatment of this monogenic disease.

LDLR in the way of endocytosis cycle clearances most excess 
LDL-C from the serum, playing a critical role for LDL-C clearance 
from the circulation by the liver [22-24]. Overexpression LDLR 
which is gained by through retroviruses [25], adenoviruses [26] 
and Adeno-Associated Viruses (AAV) [27] transfecting the liver tis-
sue, is effective in lowering serum levels of total cholesterol, which 
was limited in the clinical application due to their inherent carcino-
genicity, cytotoxicity and immunogenicity [28].

Exosomes-Based Gene Transfer
The effects of exosomes on lipid metabolism. The pathway of 

reverse cholesterol transport (RCT) can transport the vast ma-
jority of cholesterol content from peripheral tissue to liver tissue, 
maintaining intracellular cholesterol homeostasis. ATP-binding 
cassette transporter A1(ABCA1) and ATP-binding cassette trans-
porter G1(ABCG1) mediate intracellular cholesterol efflux during 
the process of RCT [29]. Circulating miRNAs in exosomes, such as 
miR-30e and miR-92a, display inhibitory effects on ABCA1 and 
ABCG1, which arouse the accumulation of intracellular cholesterol 
[30]. Platelet-derived exosomes reduced scavenger receptor CD36 
expression of macrophage cells, and consequently reduced the 
uptake of harmful cholesterol [31]. In addition, hepatocytes-de-
rived exosomes could transfer sphingosine kinase 2 to form sphin-
gosine-1-phosphate in hepatocytes, leading to cell proliferation 
and liver regeneration [32]. These findings indicated that exosomes 
may play a role in lipid metabolic diseases.

LDLR mRNA-loaded exosomes in the role of therapy FH. In the 
FH model (LDLR-/- mice), the LDLR mRNA in exosomes was effec-
tively transported to the liver where the LDLR mRNA was translat-
ed into corresponding protein in hepatocytes [33-35] with stable 
function in the recipient cells (Figure 2), which showed that exo-
some-mediated delivery of LDLR mRNA effectively restored the ex-
pression of LDLR protein, reduced the deposition of lipid and low-
ered the level of serum LDL-C in LDLR-/- mice, providing a novel 
treatment for patients with FH.

Figure 2: A new strategy for the treatment of familial hypercholesterolemia. (1) The encoding sequence of LDLR was cloned into plasmid 
vector and transfected into packaging cells. (2) The exosomes rich in LDLR mRNA (ExoLdlr) were harvested, and the encapsulation effect 

of the exosome was examined. (3) To study whether the exosome can be effectively transferred, and the mRNA of exosomes would be 
translated into functional proteins of receptor cells. At last, the distribution of exosome in vivo and the efficacy of exosome-based LDLR gene 

therapy will be evaluated.
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Large producing exosomes carrying functional mRNA. Exo-
somes showed more superiority than viruses in carrying hepato-
cyte mRNA into liver tissue, and the integrity of inner membrane 
of exosomes would protect the mRNA from digestion [36]. Since 
original exosomes which were inserted with exogenous large size 
of mRNA into were secreted in lowing-yields, Yang, et al. developed 
a new method to break through this limitation. They transfected 
various of cells with plasmid DNAs through a focal and transient 
electrical ways to elevate yields of exosomes carrying mRNAs or 
peptides, which actually leaded to up to more 50-fold exosomes 
secretion and more than 103-fold mRNA transcription of exosome 
[37]. Above all provide us with a new way to make exosomes as 
convincing clinical treatment strategy [38].

Advantages of Exosome-Based Gene Therapy
Spanning biofilm. Exosomes can be attached to the surface of 

targeting cells or tissues through specific molecular recognition 
[39], therefore, exosomes loaded with unique RNA and protein sub-
stances will play their various of biological functions. The exosome 
was started with endocytosis or membranous invagination of cells, 
which firstly is formed in the way of the early endosome, then fur-
ther developed into a polycystic endosome (MVE) [40]. After fusion 
with the cell membrane, the exosome in the MVE is released into 
extracellular. Since the exosome-coated structure was similar to the 
cellular membrane, the exosome was born with the ability of going 
through the biofilm during the information exchange [41], which 
made themselves transfer intercellular communication and signal 
transduction of phenotypic traits of parent cells.

Exosomes have the ability to cross biological barriers. Cell-de-
rived exosomes also possessed the ability of going through the 
blood-brain barrier, participating in a variety of activities of the 
central nervous system, such as inducing the outward growth of 
synapses and neuronal survival, mediating neuronal development, 
and regulating synaptic activities [42]. In zebrafish, neurons can 
remotely regulate the integrity of blood-brain barrier through se-
cretion of exosomes delivering miR-132 [43], which would provide 
a potential solution for the delivery of neuro pharmaceuticals. Exo-
somes also can survive from extreme conditions, such as gastric 
acid, digestive enzymes [44], which offers the possibility for exo-
somes through oral administration. Exosomes can escape the clear-
ance of the mononuclear macrophage system. CD47 (the ligand of 
signal regulatory protein α) is one of composition proteins of exo-
somes, and the combination of CD47 and signal regulatory protein 
α (SIRPα) will inhibit the phagocytosis of immune cells [45]. The 
human miRNA-carrying exosomes inhibit the initiation of immune 
response [46] and are circulated in the extracellular environment 
[47]. Above all indicated that exosomes as therapeutic vectors pro-
vided a novel therapy methods for various diseases [48].

Summary
Amelioration high levels of LDL-C in HoFH still remains med-

ical challenge [49] due to no effective medications available for it. 
Since LDLR is responsible for clearance most of serum LDL-C levels 

through binding and recognition of its ligand--LDL-C [24], the exo-
some which was loaden with LDLR mRNA possesses the features of 
immune evasion and mobile gene correction therapy, maybe serv-
ing as a critical vehicle for improving HoFH in the future.
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