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Introduction
Innovated developments of bio-medical cybernetics [1-3] as 

systems biology science, that is, as an intersection of systems sci-
ence and of mathematical biology [4], have been successfully ex-
tended to the study of various phenomena in human communities 
including the spread dynamics of epidemic diseases propagation. 
Literature [5-7] showed that rather useful algorithmic systemic 
models and simulation results have been obtained that have shed 
a novel insight and more axiomatic rather than hypothesis knowl-
edge in systems biology. Thus, exploring the epidemics/pandemics 
phenomenal constitute very important research not area only in life 
sciences of biology and medicine but also in mathematics, physics 
and bioengineering nowadays. Many reported research works, ref-
erenced in the article, have demonstrated systems biology should 
be considered hence understood as a rightful holistic intersection  

 
of methods of computational cybernetics and mathematical biology  
with systems and control sciences. In, studies of the spread dynam-
ics in epidemic diseases propagation, their asymptotic behaviour 
and the feasibility of extinction and/or persistence via domain(s) of 
attraction (DoA) governing spread dynamics, with centrality issue 
of stability at their heart essence. 

This review research and its previous results [8-10], are con-
fined on classes of epidemic models susceptible-infectious-re-
moved and susceptible-infectious-removed-susceptible (SIR and 
SIRS) first explored in [5,6,11,12]. For, public health issues are be-
coming more and more important in society [3,13]. Epidemics refer 
to a disease that spreads extensively and rapidly by infection and 
affecting many individuals in an area or a population at the same 
time. Some examples are the SARS in 2002 or the swine flu and 
more recently Covid-19 and other infection spreads [9,14]. 
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Traditionally [15] mathematical modelling of the temporal evo-
lution of an epidemics/pandemic make use of deterministic and 
stochastic differential equations [16,17]. However this approach 
has some serious drawbacks in that it neglects the local character 
of the spreading process, it does not include variable susceptibility 
of individuals, and cannot capture and handle notorious boundary 
and initial conditions, thus other mathematical and computational 
methods are needed as well. Cellular automata [18-21] can over-
come these drawbacks and have been used by several researches 
as an efficient alternative method to study epidemics spread prop-
agation. In particular, Wolfram [21] argued in the cellular automata 
(CA) were originally introduced by R. Ulam and J. von Neumann in 
1950s with the aim to develop and establish models of biological 
self-reproduction [22]. Also, Wolfram [21] pointed out in soon F. 
Amoroso, R. Fredkin and J. Cooper have proposed a simpler repli-
cator algorithm based on parity or modulo-two rules based on von 
Neumann’s ideas. Only then Wolfram developed his computation 
theory of cellular automata. On these grounds independently Fuen-
tes and co-authors [18] in and Willox and co-authors [22] in devel-
oped further and established the axiomatic theory of the CA-mod-
elling epidemic spread and its applications. In those studies, by 
relevant applications the CA were proven to represent simple and 
yet computational cybernetic model capable to emulate complex 
physical, biological or environmental phenomena. Nonetheless, 
first concept and notion of a cell had appeared in conjunction with 
the set-theoretic operation of set partition [20]. 

A much more difficult problem and delicate too appeared ex-
plorations in the dynamics of epidemic propagation and estimation 
of the domain-of-attraction [2]. Although these explorations on 
domain-of-attraction (DoA) are based on classes of SIR and SIRS 
epidemic models, the assumption of varying-size population and 
constant immigration is prerequisite. Furthermore, assumption 
that both the disease-free equilibrium and the endemic equilibrium 
do exist is also needed. These problems have been explored by ap-
propriate techniques of computer simulations using the especially 
derived mathematical models and computing algorithms. In partic-
ular, the DoA of epidemic model dynamics was widely estimated by 
using sum-of-squares (SoS) optimization approach. This estimation 
study for SIRS epidemic models has been carried out by using sum-
of-squares optimization methodology. 

The actual computations were performed by employing the 
‘SeDuMi’ semi-definite optimization platform due to Henrion and 
Lasserre [23]. The viability of all these ideas has been confirmed by 
the successful application to theoretical SIRS models. The obtained 
computer simulation results enabled the proposed optimization 
approaches for analysing SIR and SIRS epidemic models with re-
spect to domain-of-attraction to be compared with results of more 
traditional Lyapunov [24] theory, based LMI approach. The respec-
tive advantages and disadvantages appear well revealed hence 
provide valuable information for analysing the diseases spread in-
fection mechanisms, and thus possibly forecast the future trends 
of infectious diseases. It is believed that these findings can help to 
assess the effectiveness of prevention and treatment as well as of 
managing programs. 

The estimation of domain of attraction (DoA) for large-scale in-

terconnected systems [25], that is, region(s) in state space where 
system dynamics is asymptotically stable, have been explored by 
many researchers due to its importance in both theoretical studies 
and practical applications. For, it is an essential research topic for 
the stability analysis of hybrid and nonlinear systems as well as in 
optimization methods. The study of the DoA for the epidemic dis-
ease model is thus important since it can give guidance how to fore-
cast or determine the developmental trend of epidemic infections 
and therefore adequate help to societies. The solution can be used 
to describe the spread characteristics of infectious diseases, pre-
dict the status of infection and evaluate the efficiency of the control 
strategies for infection spread. 

Among more recent studies Brauer and Castillo-Chavez [4] ap-
plied stability analysis theory to find the equilibrium for the SIRS 
epidemic model. In their respective works, Li and Jin [26], Tang and 
Li [27], and Li and Ma [28], the global asymptotic stability of both 
disease-free equilibrium and a possible endemic equilibrium have 
been analyzed. The local stability analysis and optimal vaccination 
of a class SIR model was investigated in [29]. The local stability of 
the equilibrium for SIRS and SEIRS models had been considered in 
[30] under the assumption that the incidence rate was given. Hahn 
[31] has proved that the estimation of the domain of attraction for 
nonlinear dynamical systems based on Lyapunov stability theo-
ry [32] can be translated into an optimization problem and then 
solved using optimization methods [31]. Thus in order to analyze 
the epidemic model not only qualitatively but also quantitatively, 
many scholars paid special attention to certain optimization prob-
lems involved. An optimization approach for finding the DoA of a 
class SIR models, based on the moment theory, is presented in [33]. 
Further, Matallana, et al. [34] computed the DOA in epidemiologi-
cal models with constant removal rates of infected individuals. In 
addition, Makinde [35] has contributed a domain decomposition 
approach to a SIR epidemic model with constant vaccination strate-
gy. A translation of the severely constrained optimization problems 
into Linear Matrix Inequality (LMI) problems based on the moment 
theory is given in Lassere [36,37]. This method has been linked 
with the choice of a Lyaponv function thus yielded a LF-LMI tech-
nique. In addition, Lassare [36] managed to expand the robust op-
timization approach into the hard polynomial programming prob-
lems. Also, Hachico and Tibken [38] gave an algorithm for solving 
the optimization problems for estimation of DoA via employing LMI 
techniques. It was further innovated by Hachico [39] in which he 
yielded expedient computational time thus important and valuable 
improvement.

The Sum-of-squares optimization method (SoS) [40-42,14] and 
[43-45,30] via employing the LMI technique to mathematical biol-
ogy was introduced Chesi [40] and further extended in Chesi, et al. 
[41] and Chesi [14,42]. The power of the SoS method stems from 
the fact that SoS problems result in semi-definite programs (SDP), 
which are solved efficiently in polynomial system models. Further-
more, it was re-elaborated in considerable depth for the purpose of 
computing the polynomial Lyapunov functions for nonlinear sys-
tems in Jarvis-Wloszek’s [46] doctoral dissertation. In turn, many 
researchers exploited the SoS method to provide lower bounds on 
the largest estimation of the DoA using convex LMI optimization 



Am J Biomed Sci & Res

American Journal of Biomedical Science & Research

Copyright© Georgi M Dimirovski

79

techniques. A certain new development of SoS optimization was 
given in Prajna, et al. [47]. Another analysis technique for the stabil-
ity region with SoS programming was proposed by Tan and Packard 
[48]. The local stability analysis by combined usage of simulations 
and sum-of-squares programming was given in work by Topcu and 
Packard [49]. Novel developments of the SoS optimization in con-
trol applications have been given in [9,10] and in [8,13]. 

A natural follow up of these results is that the optimization 
problem of the DoA for a given class of systems has gained re-
search interests among systems and control scientists, because it 
appeared a rather important problem in the field of mathematical 
and systems biology. Moreover, it appeared to include considerably 
involved issues of computational cybernetics in a systems control 
problem setting. This paper is one of those studies dedicated to the 
estimation of DoA for a class of three-dimensional SIRS epidemic 
model for varying-size population with constant immigration. Also, 
in the present setting, the death factor in the conditions, which was 
first exploited ny Lan, et al. [30], is included into consideration. In 
view of the problem complexity and the need for computational ef-
ficiency, a novel sum-of-squares optimization for analysing the epi-
demic model and estimating the DoA is proposed. It was shown that 
an invariant subset of domain of attraction can be successfully com-
puted and even enlarged to its feasible probabilistic boundaries. 

Further this paper is organized as follows. Section II reviews 
the preliminaries and the background knowledge on general SIRS 
epidemic model dynamics as well as analyzes the local stability of 
the given system dynamics. The methodological technique of using 
the CA approach in order to study the effect of the vertical trans-
mission on the epidemic propagation is developed in sections III 
and IV. In the established model, individuals are assumed to be dis-
tributed in the cellular space such that each cell stands for an indi-
vidual of the population it is aimed at. Three classes of population 
are studied and simulation results given: susceptible, infected and 
recovered. Further, the model also has been extended to include the 
effect of the vaccination of some parts of the population on epidem-
ic propagation. Thus, it can serve as a basis for the development of 
algorithms to simulate real epidemics based on real data, which is 
subject of future research. In Section V, the novel estimation of the 
DoA for the SIRS epidemic model dynamics using SOS optimization 
algorithm is presented. In Section VI, a illustrative example and its 
numerical simulations are given to demonstrate the effectiveness 
and feasibility of the proposed method, and issues of domains of 
attraction for future research indicated. Concluding remarks are 
presented in Section VII. 

On SIRS Theoretic Models and Preliminaries
Following X Mao [16] and works [19,50,30,36] a fairly gener-

al class of epidemic models is described by means of the following 
stochastic differential equation [37] with general nonlinear inci-
dence coefficients: 

( ) ( ( , , ) ) ( ),
( ) ( ( , , ) ( ) ) ( , , ) ( ),

( ) ( ( ) ) .

dS t A S f S I R R dB t
dI t g S I R I dt g S I R dB t

dR t I R dt

µ β δ
β µ γ α σ

γ µ δ

= − − +
 = − + + +
 = − +

          (1a)

Notice quantities and symbols in both (1) and (3) denote: vari-

ables S(t), I(t), R(t) represent number of death rates of susceptible, 
infectious, and removed at time t , respectively; A  is the require-
ment rate of the total population, µ  is the natural death rate, γ  
is the recovery rate of infected individuals, and α  is the disease 
related death of infected individuals; δ  is the rate of loosing immu-
nity for removed individuals; ( , , )f S I R  and ( , , )g S I R  represent 
unknown nonlinear incidence events.

A Note on the Class of SIRS Epidemic Models 
The following deterministic and simplified SIRS epidemic mod-

el can be derived from Eqs. (1a)

( ) ,
( ) ,

( ) ,

S t A SI dS cI R
I t SI I dI I cI

R t I dR R

β δ
β γ α

γ δ

= − − − +
= − − − +

= − −







 (1b)

where quantity SIβ  represents the bilinear infection rate. Now, 
respectively, death rates of susceptible, infectious, and removed/
recovered at time t  represented as S(t), I(t), R(t) are the state vari-
ables of epidemic dynamics. Symbol α  is the population input rate 
constant. Constants d  and γ  denote the coefficient of the natural 
recovery and mortality rates of the population. Quantity c  denotes 
the susceptibility rate (not immune) and δ is the immunity loss ra-
tio of the restoration people in units of time. Further, the size of 
total population at time t may be denoted by N, with N=S+I+R. In 
turn, it should be also noted that N’=A– d N – α I. 

Suppose quantity 0 ( ) / ( ( ))R A d d cβ α β= + + +  describes the 
basic reproduction number, which determines whether the disease 
dies out or remains alive. Then the global asymptotic stability of 
the disease-free equilibrium and the endemic equilibrium implied 
by the SIRS epidemic model dynamics can be analyzed and estab-
lished. Let denote ( )0,0,/1 dAP  the disease-free equilibrium and 

( )3212 ,, pppP  the endemic equilibrium where:

1 ,d cp α γ
β

+ + +
=

2

2 2

( )( ) ,
( )

A cd d d d dp
d d d d

β α γ δ
β α γ δ αδ
− − − − +

=
+ + + +

 (2)

2

2 2

( ) .
( )
A cd d d dp

d d d d
β α γ γ

β α γ δ αδ
− − − −

=
+ + + +

It is natural to assume the population numbers to tend to the 
constant /A d , and when /N A d>  then it follows 0'<N  too. 
Thus, all solutions will either lie or tend in a regional area, which 
may be denoted as follows:

3( , , ) | 0 , 0, 0, 0 .AD S I R S I R S I R
d

 = ∈ < + + ≤ ≥ ≥ ≥ 
 



(3)

Lemma 1 [5]. If 10 <R , the unique equilibrium point of the SIRS 
model ( )1 / , 0, 0P A d  is globally asymptotically stable. If 10 >R , the 
endemic equilibrium ( )3212 ,, pppP  is locally asymptotically stable 
but 1P  is not stable.

Remark 1. When 10 <R , regardless of the initial number of pa-
tients, the disease will not develop and will gradually disappear in 
the group (the point 1( / ,0,0)P A d  is the disease-free equilibrium 
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point). When 0 1R > , the disease will expand, and the stability num-
ber of the susceptible individuals and the illness individuals can be 
expressed, respectively, as follows:

( )
β
γα cd +++ , 

)(
)(

γαβ
γαβα

++
+++−

d
cdd . (4)

In thus developed process of epidemic diseases the point 
( )3212 ,, pppP  is the endemic equilibrium point.

A Note On Sum-of-Squares Optimization 
Method

A multivariate polynomial ( ) ( )nxxxpxp ,,, 21 =  is a sum of 
squares, if there exist polynomials ( ) mixf i ,,1, =  such that

∑
=

=
m

i
i xfxp

1

2 )()(
	  (3)

and 

















=
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=Σ

∑
=

=

M

i
i

n
M
iin

n fs

RfMRs

1

2

1

:such that

,}{,|  (4)

is the set of SoS in n  variables. The existence of an SoS decom-
position can be shown to be equivalent to the existence of a positive 
semi-definite matrix Q , such that:

)()()()( xZxQxZxp T= , (5)

where )(xZ  is the vector of monomials of degree less than or 
equal to ( ) 2/deg p . The decomposition (3) can be easily converted 
into (4) and vice versa. This equivalence makes SoS decomposition 
computable using semi-definite programming, since finding a sym-
metric matrix Q subject to the affine constraint (4) is nothing but a 
solvable semi-definite programming problem. Sum-of-squares pro-
gram is a convex optimization problem as follows:

1

,0 ,
1

min

. . ( ) ( ) ,

J

j j
j

J

i i j j n
j

c

s t a x a x c

ω
=

=

+ ∈Σ

∑

∑

 (6)

where jc  are scalar real-valued decision variables, jω  are given 
real numbers, and ( )xa ji,  are given polynomials (with fixed coeffi-
cients).

Remark 2. Some known SoS optimization problems can be 
solved using the computing toolbox SOSTOOLS [47], which is free, 
and by means of the MATLAB third-party toolbox the sum-of-
squares programming tasks.

On Cellular Automata Theory
The cellular automata (CA) represent a category of finite state dy-

namical systems [20,51] in which space and time are represented by 
discrete finite sets (concept of cells emerged from set partition opera-
tion). The cells are arranged in the form of a regular set lattice structure 
and each must have a finite number of states. These states are updat-
ed synchronously according to a specified local rule of interaction. At 
each step, each cell computes its own new state from that of its close 
neighbours [32,52]. Thus, the laws of such a system are local and 

uniform. Though the CA, even starting from a complete disorder, 
their irreversible evolution is capable of spontaneously generating 
ordered structure. For example, a simple two-state, one-dimension-
al cellular automaton will consist of a line of cells, each of which can 
take either value 0 or 1. Using a local rule (usually deterministic), the 
values are updated synchronously in discrete time steps for all cells. 
With a K -state automaton, each cell can take any of the integer val-
ues between 0  and 1K − . In general, the rule governing the evolution 
of the cell automaton will encompass m  sites up to a finite distance r  
away. Such cellular automaton is called a K -state, m -site neighbour-
hood CA [21,22].

Similarly, as the one-dimensional CA, a two-dimensional cellular 
automaton consists of a uniform grid, with each grid taking on a finite 
set of possible values, which are updated in discrete time steps ac-
cording to a deterministic rule involving a local neighbourhood of the 
grid around it. Let L  be a regular set lattice (i.e. cells are the elements 
of L ), with S  is a finite set of states, 0s S∈ , and 0s  is the initial state. 
Let N be a finite set (of size n N= ) of neighbourhood indices such 
that r L∀ ∈ , c N such that r c L∀ ∈ + ∈ , and let function : nf S S→  be state 
transition function. Then, the quintuplet 0{ , , , , }C L N S f s=  defines 
and is called a cellular automaton. An association configuration 

:tC L S→  of time t  is a set function that associates a state with each 
cell of the lattice L . The role effect of the transition function f  
is to change the configuration of celullar automaton tC  at time t  
into the new configuration 1tC +  time 1t +  according to the rule: 

1 ({ ( ) ( )})tC f Ct i i N r+ = ∈ , (7)

where N(r) denotes the set of neighbours of cell r,

( ) { ( )}N r i N r i N r= ∈ − ∈
 (8)

As the CA is needed in order to simulate a real-world process 
and search for solution to real-world problem, the next step is to 
conclude and define the crucial set-theoretic issues. Namely, the 
choice or construction of: the lattice geometry, neighbourhood 
size, boundary conditions, initial conditions, set of states, and 
the transition rule [21,22]. 

The lattice geometry consists of the lattice dimension and 
lattice shape. It is supposed the grounds where the epidemic is 
spreading stands for the cellular space of the CA, and it is parti-
tioned into identical square areas, each representing one cell of 
the CA. Then neighbourhood in which cells can interact is matter of 
choice according to envisaged spread environment. The neighbour-
hood is usually described by specifying the set of cells that neighbour 
a given cell inside the CA. 

For a square lattice, two types of neighbourhood are typically 
used. The first choice is the generalized Von Neumann neighbour-
hood of radius r  [22]: 

{ }( , ) ( , )i jN k l L k i i j r= ∈ − + − ≤
. (9)

The second one is the Moore neighbourhood of radius r [22]:

{ }( , ) ( , )i jN k l L k i e i j r= ∈ − ≤ ∧ − ≤ . (10)
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Both are depicted in Figure 1 for values of the radius 1r =  and 2r =  of the neighbourhood.

Figure 1: On definitions of the neighbourhood in cellular automata.

Constructing of Proposed Models and Compu-
ter Simulation Results 

In this section, the mathematical model based on cellular au-
tomata for simulating the spread of an epidemic disease having the 
characteristic feature of vertical transmission. The individuals are 
assumed to be distributed within the cellular space such that each 
cell stands for an individual of the entire population. 

Constructing of Cellular Automata Models

The cellular space is considered to be large enough to ensure 
that spreading of the epidemic affects only to the central region of 
the state process space. The Moore [52] neighbourhood and radius 

1r =  have been used in developing the CA-based model. The main 
features of the epidemic and the environment where it is spread-
ing can be summarized as follows:

(i)	 The epidemic is not immigration or emigration, natural 
death and birth is considered, with b  is birth rate and d  is 
natural death rate.

(ii)	 The population distribution is inhomogeneous, the total 
population of the cellular space is 0M  at the initial time 0t , and the 

population at arbitrary time t  is tM . 

(iii)	 It is suppose that the way of infection is the contact 
between the infected individual and the healthy individual; the in-
volved incidence 

 rate is β . 

(iv) We consider the characteristic of vertical transmission. 
The individual can reproduce posterity every time. The propor-
tion of the infected babies is Ip . 

(iv)	 The death rate of infected is α , the recovery rate of 
infected is γ .

The algorithm-systemic structure of this kind of epidemic dis-
eases model is shown in Figure 2 with its two computational con-
figuration schemes illustrated in Figures 3 & 4. Notice however, the 
epidemic evolutions as observed at the time 1+t  which were computed 
by the constructed CA with the transition rule [10,40], these are pre-
sented in Figures 5 & 6. Therefore, these figures shed more light into 
the computational insights thus into the computational discrete-event 
dynamics the CA-based epidemic models.

Figure 2: Algorithm-systemic model structure of the epidemic diseases characterized by vertical transmission and contract.

Figure 3: Status  1
,
t
i jC +  at time 1t +  of the computational configuration exploring phenomena vertical transmission and contract epidemic from when it 

was 
, 1t

i jC = .
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Figure 4: Status  1
,
t
i jC +  at time  1t +  of the computational configuration exploring phenomena vertical transmission and contract epidemic from when 

it was , 0t
i jC =  .

Figure 5: Evolution of the infected population number, deathrate of infective population is 0.25.

Figure 6: Evolution of the susceptive population number when death-rate of infective population is 0.25.

Here for an arbitrary cell state there is adopted: 1ij ijs s⋅ =  and 
represents empty state; while 1ijs =  represents state of susceptive 
individual; 2ijs =  represents a infected one; and 3ijs =  represents 
state of a recovered individual. Then the configuration of time t in the 
CA-based model is described by instantaneous automaton state:

{ }, , , ,t t t t t
ij ij ij ij ij ijC s ndF idF bF rF= . (11)

Here t
ijndF  represent a flag called the “natural death flag”. The 

value of this flag indicates whether the individual located in the cell 
( , )i j  has reached natural death at time t . If 1t

ijndF = , the individu-
al located in the cell ( , )i j is natural death at time t .

Also, the following indications and meanings should be noted 
further:
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If 0ijnF = , the individual located in the cell ( , )i j  is not in natural 
death at time t .

ijiF  is a flag called the “infectious death flag”. The value of this flag 
indicates the infectious individual located in the cell ( , )i j is infec-
tious death at time t .

ijbF  is a flag called the “birth flag”. The value of this flag indicates 
the individual located in the cell ( , )i j will generate offspring at time 
t .

ijrF  is a flag called the “recover flag”. The value of this flag indi-
cated the infectious individual located in the cell ( , )i j is recovered 
at time t .

Computer simulations results

The cellular space of the CA based model the simulations was 
formed by a two-dimensional array of 100x100 cells. The propor-
tion of population is 80%. For the sake of simplicity, it was assumed 
to use the following artificially chosen parameters: d = 0.006, 
b=0.012, γ = 0.3. These simulation results are depicted below.

When 0.25α = , if the number of recovered states is zero, the ep-
idemic will outbreak at time 3t =  as simulations show in Figures 5 
& 6. 

Finally, when 0.80Ip = , the epidemic reaches the inherent 
steady state at the instant of 300 time-units as Figure 9 demon-
strates. It should be noted however, it takes a considerably long 
time of propagation spread until this steady state is being reached 
and established as equilibrium state. 

Figure 7: Evolution of the susceptive population number when death-rate of the infective population is 0.01.

Figure 8: Evolution of the infected population number, death-rate of infective population is 0.01.

Figure 9: Evolution of the SIR population number with the vaccination accomplished before the epidemic.
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DoA Estimation For SIRS Epidemic Dynamics
First certain definition and a lemma are introduced in here; 

also, see [5,41,12,3,39,45].

Definition 1. Consider the following nonlinear system
0( ), , (0)nx f x x x x= ∈ =



 (12)	 (6)

where ( ) nx t ∈  represents the state vector of the system and 
( )xf  is a polynomial function of the state vector. Let nD ⊂   be a 

domain containing the equilibrium state point 0=x  of the system 
(6). Let ( ) : nV x D →  be a continuous function. If the allowing con-
dition is satisfied,

,)0(\0
,)0(\0)(

,0)0(

* DonfVV
DonxV

V

<∇=

>
=



 (13)

then the system (6) is locally asymptotically stable in equilib-
rium at origin 0=x , and denotes { }: | ( )n

c x V x c DΩ = ∈ ≤ ⊆  is the 
positively invariant region. 

Lemma 2 [8]. If there exists the continuous, differentiable and 
positive definite function : nV →  , satisfying

{ }
{ }{ } { }

: | 1

| 1 \{0} | 0

n

n n

D x V

x V x V

= ∈ ≤

∈ ≤ ⊆ ∈ <






 

 (14)

the solution of the system (6) for all ( ) Dx ∈0  can be obtained, 
and ( ) Dtx ∈ , 0)(lim =

∞→
tx

t
. D is the subset of the DoA of (6).

If the Lyapunov conditions for local asymptotic stability are 
sought for, then construction of the SOS programming is needed in 
order to prove the fixed point stability. Additionally, this technique 
can be used to find and maximize the size of certain invariant sub-
sets of its region of attraction. According to Lemma 1, the system 
(6) is locally asymptotically stable in ( )3212 ,, pppP , so we can esti-
mate the DoA of SIRS epidemic model based on SOS optimization.

First, let suppose that 1pSx += , 2pIy += , 3pRz += , and then 
the equivalent model can be constructed as 

{ 1 2 3( , , ), ( , , ), ( , , ).x f x y z y f x y z z f x y z= = =  
 (15)

In order to expand the set D, we define a region : { | ( ) }P x p xβ β= ∈ ≤

, which contains the state variables and maximizes β , satisfying 
DP ⊆β . In this way, the DoA problem is transformed into the opti-

mization problem (16).

max

0, ,
. . { | ( ) } { | ( ) 1},

{ | ( ) 1} \{0} { | ( ) 0}.

nV R

n
n n

n n

V V
s t x p x x V x

x V x x V x

β

β

∈

> ∈


∈ ≤ ⊆ ∈ ≤
 ∈ ≤ ⊆ ∈ <



 



 

 (16)

Let assume constructing the equivalent constraints for 0≠x  
at cases 0)(1 ≠xl , 0)(2 ≠xl , nll Σ∈21,  where nΣ  is some function-
al space of real-valued parameters. Then optimization scheme de-
scribed with (16) is transformed as related to condition of empty 
set ∅ . 

( ), 0 0

1

2

max

{ | ( ) 0, ( ) 0} .
. . { | ( ) , ( ) 1, ( ) 1} ,

{ | ( ) 1, ( ) 0, ( ) 0} .

nV R V

n

n

n

x V x l x
s t x p x V x V x

x V x V x l x

β

β

∈ =

 ∈ ≤ ≠ =∅


∈ ≤ ≥ ≠ =∅
 ∈ ≤ ≥ ≠ =∅









 

   (17)

It should be noted, it is possible to get for problem (

17) the constrained condition of SoS optimization which is 
simplified through Psatz Theorem and Generalized S-procedure 
[30,35,36]:

1

3

,

1

1

2 2

max

,
. . (( ) ( 1)) ,

((1 ) )) ,

V s

n

n

S n

V l
s t p s V

V s V l

β

β

 − ∈Σ

− − + − ∈Σ
− − + + ∈Σ



	  (18)

where nn sssll Σ∈Σ∈ 32121 ,,,, .

Remark 3. Problem (18) is a bilinear programming problem 
hence it can be compute by using SOSTOOLS and PENBMI [47] that 
are used for solving the bilinear SDP problems. The set domain of 
attraction { , , |nx y z∈  }( ) ( , , ) 1iV x y z ≤  along with Lyapunov functions 

( ) ( , , )iV x y z  (the LF) can be computed according to (18); here i  is the 
number of iterations that may be needed.

DoA Case Study Example: Simulation Results/
and Comparison Analysis

An illustrative example is explored in this section via fixing co-
efficients to certain numerical values, computer simulations and a 
comparison discussion. 

Model for a numerical case study 

A numerical case-study is constructed by assuming values 
2/1====== dcδγβα , ,4=A  and then 120 >=R  [8,9]. The ob-

tained system model has the form of the following systems of dif-
ferential equations:

1 1 1 14 ,
2 2 2 2

1 1 1 1 1 ,
2 2 2 2 2
1 1 1 .
2 2 2

S SI S I R

I SI I I I I

R I R R

 = − − + +

 = − − − −

 = − −







 (19)

Let assume suitable fixed values 4,x S= +  8
5 ,y I= +  4

5z R= +  
hence 8 4

5 52 (4, , )P . The latter can be transformed into ( )*
2 0,0,0P . 

Then the system model can be represented in the following form: 

1 3 13 1 ,
2 2 10 2
4 1 ,
5 2
1 .
2

x z y x xy

y x xy

z y z

 = − − −

 = +

 = −







 (20)
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The condition of the domain of attraction for (20) satisfies:

4, 8 / 5, 4 / 5x y z≥ − ≥ − ≥ − .

Next, suppose the highest degree values in variables and quan-
tities in ,V 1 2, ,l l  and 1 2 3, ,s s s  can be defined by assuming the relevant 
constant as presented below:

1 2 3 1 2
2, 2, 2, 4.v S S s l ld d d d d d= = = = = = .

Then the Lyapunov function ),,(2 zyxV  [12] can be computed 
employing SoS optimization technique by using SOSTOOLS box [2], 
and it found as follows:

2
2

2 2

( , , ) 0.1656 0.19726 0.087638
                   0.54032 0.0084449 0.071572 .
V x y z x xy xz

y yz z
= + + +

− +

 (21)

Thus the actual attraction domain of system 19 (13) can be 
computed as a set defined by model:

2

2 2
2

( , , ) | 0.1656 0.19726 0.087638
0.54032 0.0084449 0.071572 1,

4, 8 / 5, 4 / 5.

x y z x xy xz
D y yz z

x y z

 + + +
 

= − + ≤ 
 ≥ − ≥ − ≥ − 

(22)

Further Discussion and Comparison
With reference to the LF-LMI optimization based on moment 

theory and the SOS optimization approaches when applied to the 

estimation of DOA for the epidemic model may be establishes as in 
the sequel.

Firstly, let Lyapunov function ),,(11 zyxVV =  be chosen as follows:

2 2 2
1

299 6457 286( , , )
475 3800 475
378 184 194 ,
475 475 475

V x y z x y z

xy yz xz

= + + +

+ + +
 (23)

Then the region DoA of system (13) can be computed by using 
GloptiPoly-Box of Henrion and Lassere [43]. It was found as the fol-
lowing subset:

2 2 2

1

299 6457 286 378 184( , , ) |
475 3800 475 475 475
194 2.6049, 4, 8 / 5, 4 / 5.
475

x y z x y z xy yz
D

xz x y z

 + + + + +  =  
 + ≤ ≥ − ≥ − ≥ −
  

As the now domain of attraction obtained is an irregular sphere, 
in this case application software Mathematica is used to obtain the 
simulation results of the DoA for the SIRS epidemic model based on 
both the Lyapunov function (LF) and the SoS optimization theories. 
Those results are depicted in Figure 10. 

Remark 4. Equations 0/),,(1 =dtzyxdV  and 0/),,(2 =dtzyxdV  give sta-
bility region boundary of the SIRS epidemic model. 

Figure 10: Enlarged relative to previous DoA of SIRS model based on Lyapunov theory and SoS optimization methods [4].

Figure 11 illustrates the analysis of the obtained DoA by 
means of those two optimization approaches. It is readily seen 
from both figures that the DoA obtained by the approach argued 
for in this study is larger than that domain of attraction using the 
randomly selected Lyapunov function of LMI approach. Simula-

tion result demonstrates enlarged DoA using SoS optimization is 
found in compared with Lyapunov theory approach. It is an issue 
for future research to what extent it may a viable enlarged DoA 
could be found to expand.

Figure 11: Enlarged inner domain relative to the previous DoA of SIRS epidemic model based on LMI optimization with moment theory and SoS 
optimization [4].
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It should be noted that Li, et al. [28] also gave an LMI optimi-
zation approach to investigate the estimation of DoA of a class 
of SIRS models using LF-LMI approach based on moment theory 
[46]. Their technique produced the DoA of SIRS model as deter-
mined by ),,(33 zyxVV = in Figure 11. The concluding simulation 
results of DoA for SIRS epidemic model using the LF-LMI with 
moment theory optimization and the SoS optimization methods 
are depicted in Figure 11. 

Remark 5. The internal ellipsoid is the three-dimensional 
map of the domain of attraction of the SIRS model computed via 
the moment theory [11,46]. And the outside grid three-dimen-
sional map is computed by means of the SOS optimization algo-
rithm [8,9,2]. 

In fact, Figure 10 illustrates a kind of comparison analysis 
of the computable DoA by the two optimization approaches by 
more details. Due to preselected Lyapunov function using the LMI 
method with the momentum theory, the algorithm appears static. 
The SoS optimization technique however provides a dynamic it-
erative solving algorithm for optimum Lyapunov function choice. 
Thus, operationally the algorithm is dynamic too. It can be seen 
from Figure 11 furthermore the enlargement of the domain of 
attraction of SIRS model using SoS optimization, as compared to 
that of LF-LMI optimization based on moment theory, is obtained 
too and at the same time higher accuracy is achieved. Though 
precision appeared relatively low when high-dimension systems 
( 3≥n ) are dealt with. Thus, the SoS optimization algorithm is 
worth for investigating the high-dimensional systems ( 3≥n ), be-
cause the DoA found can be even larger. Though, the computing 
speed becomes rather slow. 

Concluding Remarks and Future Research
The CA-theory based computational model for the epidemic 

having characteristic feature of vertical transmission and con-
tract has been built. It is based on the proposed two-dimensional 
cellular model that can be considered as an alternative SIR-type 
model of epidemic propagation. 

It is characterized by the several innovated features, which 
are assumed as an essential background features of this tech-
nique. First of those innovated features is the assumption the 
total amount of population in the cellular space is not constant. 
Second, the local transition function is simple and only several 
epidemiological and environmental parameters are involved. 
And thirdly, the time of the stable steady state of epidemic spread 
with vertical transmission characteristic and contact is also com-
puted. The proposed CA model is believed to be a proper basis 
for future investigation of the underlying phenomena of the dy-
namics of real-world epidemics because the vaccination effect 
has been considered. 

The DoA of a class of SIRS epidemic dynamic models, which 
has been shown rather useful in real-world applications, has 
been investigated by using both SOS optimization and LF-LMI 
approaches. The computation was performed by using the 
semi-definite optimization tool ‘SeDuMi’. The viability of all these 
ideas is confirmed by considerable success in applying it to the 

typical theoretic model. In addition, numerical and simulation re-
sults of the proposed SoS optimization approach were compared 
with those of the Lyapunov-function LMI technique. Thes ellip-
soid shape of DoA is realistic reasonably while the computational 
burden is drastically reduced (compared to the pure Lyapunov 
‘blind search’). A task for the future research on DoA is to explore 
the recent result on DoA estimation for large-scale nonlinear sys-
tems [25]. 

In fact, the analysis introduced in this paper played an im-
portant role in investigating the outcome predicted by disease 
model. It has been shown to provide valuable information for 
analyzing the spread mechanisms of infection and diseases, and 
also for forecasting the future trends of infectious diseases. It can 
help to assess the effectiveness of prevention, treatment and con-
trol programs, such as education, health, vaccination, quarantine, 
and other activities of social responsibility. Further, it is believed 
both approaches are applicable in other epidemic models beyond 
the SIRS, which is a topic for future research [13,22,43,53-56]. 
Yet it remains to be explored to which extent the findings of this 
paper are indeed relevant for analyzing real-world accidents of 
epidemic/pandemic diseases spreads. 
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