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Abstract

In fetal medicine, artificial intelligence plays a crucial role in preventing congenital fetal abnormalities. Anomalies of heart and 
brain in fetal ultrasonography and MRI have been shown to be recognizable, detectable, and localizable by ML algorithms and CNNs. 
Artificial Intelligence (AI) systems are capable of carrying out intricate analyses of aberrant image patterns in order to categorize 
and predict malformations in fetuses. The role of Artificial Intelligence (AI) in the prediction and risk stratification of congenital 
anomalies is explored in this narrative review. Fetal imaging (ultrasonography and MRI) examination may be optimized by ML and 
DL algorithms to reduce examination time, lighten the doctor’s workload, and increase diagnostic precision for fetal anomalies. 
The current study’s objective is to evaluate the algorithms being utilized to automate screening for fetal brain and heart anomalies. 
It also compares ML and DL algorithms in terms of efficiency and quality of the brain and heart anomaly detection in the fetus. 
The review highlights the importance of integrating multiple data sources, analyzing longitudinal data, and creating larger, more 
varied datasets for predicting congenital anomalies. The significance of human clinical expertise, interpretability, and prospective 
validation in real-world clinical settings are also emphasized. 
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Introduction
Anything that deviates from the norm or what is anticipated is 

considered an anomaly. Unusual or unexpected circumstances in 
fetus development during pregnancy are referred to as fetal anom-
alies [1,2]. Congenital anomalies or birth defects are other names 
for fetal anomalies [1-3]. Fetal anomalies fall into two categories: a 
developing fetus’ body parts, including heart, lungs, kidneys, limbs,  

 
and facial features, are affected by structural anomalies leading to 
conditions like spina bifida, cleft lip, congenital heart and brain ab-
normalities, and missing toes [1]. A body system or part, such as the 
brain, CNS, or sensory perception, can experience functional abnor-
malities that impact its operation [4]. Functional birth defects en-
compass a variety of conditions, such as Down syndrome, muscular 
dystrophy, developmental disabilities, seizures, and blindness [5].
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Fetal heart diseases refer to structural anomalies of the heart 
that develop prior to birth [6]. During pregnancy, these defects 
manifest in the developing fetus inside the uterus. According to 
WHO, approximately 0.5M adults in the USA suffer from congenital 
heart disease [6]. Heart defects resulting from genetic or chromo-
somal abnormalities, like Down syndrome, affect one out of every 
100 children. The risk factors for fetal heart disease in children in-
clude excessive alcohol consumption during pregnancy, medication 
use, maternal viral infection during the first trimester of pregnancy, 
and an increased risk if a parent or sibling has a congenital heart 
defect [7]. 

Similarly, birth abnormalities known as congenital brain mal-
formations can be caused by developmental disruptions at different 
stages of embryonic or fetal development [8]. The nonspecific clini-
cal presentation may involve hypotonia, epilepsy, or developmental 
delay. Early and accurate diagnosis and management planning are 
made possible by advanced imaging [9]. Usually between weeks 18 
and 23, as part of antenatal care, an ultrasound scan is performed to 
look for fetal anomalies [10]. The anomaly scan looks for the devel-
opment and structure and function of the head, brain, and facial fea-
tures of the infant, development of hands, feet, limbs etc. Although, 
fetal Magnetic Resonance Imaging (MRI) has been widely used in 
the clinical setting for screening fetal brain abnormalities over the 
past ten years [11].

The role of artificial intelligence can also be seen in fetal med-
icine in order to avoid congenital fetal abnormalities. The comput-
er’s ability to carry out tasks associated with intelligent beings, 
such as learning, reasoning, and interacting, is known as Artificial 
Intelligence (AI) [12,13]. Machine Learning (ML) and Deep Learn-
ing (DL) are the two subsets of AI [14,15]. One of the primary forms 
of deep learning algorithms is Convolutional Neural Networks 
(CNNs), and recent work has shown that they can conduct image 
recognition tasks with remarkable progress [16,17]. ML algorithms 
and CNNs have demonstrated the ability to recognize [18], detect 
[19], and localize [20] standard planes in fetal ultrasonography and 
MRI. But very few studies have developed AI algorithms that could 
perform detailed analyses of abnormal patterns in fetus images to 
classify and predict congenital malformations; instead, nearly all 
recent studies using AI in fetal imaging have concentrated on the 
identification of normal fetal structures [21-23].

This paper highlights the ability of ML and DL algorithms to 
identify patterns and analyze large datasets to identify fetal brain 

and heart abnormalities. Predicting the onset and course of fetal 
abnormalities like congenital brain and heart malformations makes 
early interventions and preventive measures possible. Although, a 
number of articles have been published to review the studies done 
for fetal heart and brain analysis using AI algorithms [24-29]. How-
ever, this is the first state-of-the-art review that discusses the heart 
and brain abnormalities prediction using automated diagnosis on 
the basis of ultrasound and MRI. The studies that have utilized ML 
and DL algorithms for the prediction of fetal heart and brain abnor-
malities have been reviewed in this survey. This review contributes 
to fetal healthcare by answering the following research questions:

RQ1: Which imaging techniques are being utilized for fetal 
anomaly detection of brain and heart?

RQ2: How well does Artificial Intelligence (AI) detect both nor-
mal and abnormal features of the most common congenital defects 
affecting the fetal CNS and cardiovascular system?

RQ3: Which algorithms are most commonly utilized for the pre-
diction of fetal brain and heart anomalies?

RQ4: What are the current applications of AI-based detection 
systems in diagnosing abnormalities of fetal central nervous sys-
tem and heart?

Methodology
We did a thorough search of research articles on Google Scholar 

and Web of Science databases considering the PRISMA guidelines. 
The key terms that we utilized were deep learning, machine learn-
ing, CNNs, artificial intelligence, ultrasound, fetal MRI, fetal brain 
anomaly, fetal heart anomaly, congenital anomalies and malforma-
tions, and congenital heart disease. We found only 95 articles pub-
lished from 2014 to 2024. 

Studies that addressed the use of ML and DL algorithms in fetal 
scanning using MRI and ultrasound written in English were consid-
ered for inclusion. Each study was independently reviewed by two 
evaluators using the full text, abstract, and title as their criteria. To 
ensure focused analysis, this review incorporated studies meeting 
the following criteria: 1) written in English, 2) utilizing AI, 3) inves-
tigating fetal brain or heart anomalies, and 4) containing complete 
data. Following the application of the exclusion criteria, we found, 
as illustrated in Figure 1, 14 articles that were particularly relevant 
to fetal heart and brain abnormalities.
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Figure 1: A figure illustrating the step-by-step screening and refining of articles.

Research Findings
The research findings are as follows:

Fetal Imaging Techniques

a) Ultrasonography

Ultrasound is a noninvasive, nonradiative, convenient, and in-
expensive technique for prenatal imaging diagnosis [30]. Prenatal 
ultrasound offers a non-invasive method for assessing fetal growth 
parameters, detecting potential congenital anomalies, and aiding in 
overall fetal diagnosis through visualization of the fetus and its ap-
pendages [31]. With better diagnostic accuracy and high-quality im-
ages, it can offer comprehensive information on fetal anatomy [32]. 
Currently, organ functions, disease diagnosis, and measurement of 
fetal structures are all accomplished through the widespread use of 
two-dimensional (2D) imaging and three-dimensional (3D) ultra-
sound [33]. Pregnant women who receive routine ultrasonography 
exams can successfully lower the incidence of congenital disabili-
ties. Fetal ultrasonography is currently dealing with some obstacles 
in the clinical pipeline, though. Numerous factors, including high 
fetal mobility, pregnant women’s thick abdominal wall and incon-
sistent interpretations between doctors, influence the accuracy of 
the examination [33].

A prenatal ultrasound examination, regardless of gestational 
age, fulfills two crucial purposes: screening and diagnosis. Over the 
past ten years, screening and diagnosis based on Artificial Intelli-
gence (AI) have been introduced in an effort to improve diagnostic 
accuracy for fetal abnormalities [32,33]. These AI systems focus on 

three key areas: 1) automatically identifying anatomical structures, 
2) performing standardized measurements, and 3) classifying the 
ultrasound images to aid in diagnosis. Because obstetric ultrasound 
takes a lot of time, using AI could speed up workflow and cut down 
on examination time [33]. The majority of the related research is 
still in its early stages [19,34], despite the fact that many machine 
learning and deep learning methods have been introduced to pro-
vide high resolution imaging and accurate measurement for obstet-
ric ultrasound.

b) Magnetic Resonance Imaging

Fetal MRI is a safe alternative to X-rays for examining a devel-
oping baby. It uses magnets and radio waves to create detailed pic-
tures, and there are no known risks [35]. The first description of 
MRI in pregnancy was published in 1983 [36]. Maternal and pla-
cental anomalies were the main causes of the early obstetric appli-
cations [36,37]. A thorough examination of the placenta, umbilical 
cord, and amniotic cavity completes fetal Magnetic Resonance Im-
aging (fMRI) [35]. A precise interpretation of fetal magnetic reso-
nance imaging can yield important data that supports research 
studies, aids in management decisions, guides therapy, and aids in 
prenatal counseling. When it comes to diagnosing developmental 
issues in the fetal brain, MRI has proven to be a reliable method, 
providing intricate pictures for accurate evaluation. Congenital car-
diac lesions have also been studied in more recent times; the find-
ings have greatly improved the counseling of impacted pregnancies 
[37]. Table 1 provides a brief description of the indications of fetal 
MRI.
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Table 1: Indications of fetal MRI.

Fetal Organs Indication Category Sub-Types

Brain Congenital anomalies
Ventriculomegaly, Corpus Callosal dysgenesis 
Posterior Fossa anomalies, Malformations of 

Cerebral Cortex

Heart Congenital anomalies
Ventricular septic defect, Hypoplastic left heart 
syndrome Ebstein’s anomaly, Tricuspid atresia, 

Tetralogy of Fallot, Aortic valve stenosis

Table 2: A summary of the AL models utilized for fetal echocardiography analysis.

Citation Algorithm Outcome

[53] Random Forest Standard planes, such as the four-chamber cardiac view, were detected

[54] Fully Connected NN E, A, and V wave identification on PW Doppler traces automatically

[55] RNN Standard planes, such as the four-chamber cardiac view, were detected

[56] CNN The four-chamber cardiac view was detected, and the image quality was evaluated.

[57] CNN Standard cardiac planes were identified, and then hearts with various congenital heart defects were 
distinguished from normal hearts.

Fetal MRI accurately depicts body anatomy, it has been demon-
strated to both complement and outperform fetal ultrasound in 
various conditions [38]. Expanding its use can hasten the diagnosis 
and investigation of numerous fetal abnormalities [38]. Additional-
ly, MRI overcomes a number of ultrasound’s technical drawbacks, 
including abnormal fetal position, low amniotic fluid volume, and 
high maternal body mass index [39]. The quality of ultrasound im-
ages can be affected by fetal lying, oligohydramnios, and maternal 
habitus. With the advent of post-acquisition processing that en-
ables motion correction to be applied to both the brain and the ab-
dominal cavity, MRI can eliminate these problems [35,36,40]. Fetal 
MRI has been studied using advanced MRI techniques like Diffu-
sion-Weighted Imaging (DWI) and Magnetic Resonance Spectrosco-
py (MRS) [40]. Applications for both destructive and developmental 
brain processes could be found with fetal brain diffusion imaging. 

Radiologist and clinician understanding of the typical develop-
ing fetal anatomy is necessary for accurate interpretation of fetal 
MRI [35]. When portraying fetal anatomy, fetal age (also known as 
gestational age, or GA) is a crucial consideration [35]. Current fe-
tal MRI analysis involves examining many sequences and images, 
often not ideal for precise measurements. Furthermore, a lack of 
specialists creates delays. AI offers a solution by automating these 
tasks, leading to a faster, more consistent, and efficient approach to 
fetal MRI analysis [41]. Fetal MRI analysis is exploring the use of AI 
models. These models can automatically pinpoint key anatomical 
structures and segmentation within the scans [42]. A variety of AI 
models, primarily Convolutional Neural Network and Res-Net, have 

been employed [43-46], covering all gestational age weeks (17–38 
week). The accuracy of certain models reached 95% [47] or higher. 
Reconstructing images and preprocessing and postprocessing fetal 
images could be aided by AI [48]. Artificial Intelligence (AI) can also 
be used for placenta detection, fetal brain segmentation [49], fetal 
brain extraction, congenital heart disease prediction and gestation-
al age prediction (Table 1).

c) Fetal Echocardiography

Fetal echocardiography is a specialized ultrasound exam that 
checks the developing baby’s heart. To improve the accuracy of di-
agnosis, fetal echocardiography combines both grayscale and color 
Doppler ultrasound [50]. Grayscale images show the structure of 
the heart, while color Doppler allows visualization of blood flow 
within the heart chambers and major vessels. It uses various ul-
trasound views, including the upper abdomen, four-chamber view, 
five-chamber view, short axis view, three-vessel-trachea view, and 
longitudinal views of the aortic arch, ductal arch, and systemic 
veins [50,51].

Fetal echocardiography is an extremely specific and sensitive 
diagnostic procedure [50,52]. These days, fetal echocardiography 
is regarded as an essential part of the standard fetal anomaly scan. 
Most countries offer this type of scan in an effort to detect serious 
malformations, still, the detection rates of antenatal CHD are lower 
than those of the majority of other major structural anomalies [52]. 
Table 2 summarizes the use of ML and DL algorithms for analyzing 
fetal echocardiograms.

Fetal Abnormalities

a) Fetal Brain Anomalies

With a 1% incidence rate, anomalies of the CNS rank second 
among the most prevalent congenital fetal malformations [58]. The 
second-trimester anomaly scan uses special ultrasound techniques, 
like trans-ventricular and trans-cerebellar views, to examine the fe-

tal skull. With the advancement of AI-assisted ultrasound diagno-
sis, it was possible to identify fetal brain anomalies with 92.93% 
accuracy [28]; as a result, AI has been predicted to replace other 
screening techniques for fetal malformations of the central nervous 
system. Table 3 summarizes the studies done to predict fetal brain 
anomalies.
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Table 3: Summarized Literature on the applications of AI algorithms for the prediction of brain abnormalities in fetuses using ultra-
sonography and MRI.

Citation Target Input Architectures Pre-Processing Outcome Output Results

[59] Fetal Brain 
Abnormalities

Ultrasound 
Images

16-layer Convo-
lutional Neural 

Network

Segmentation, Excluding 
Images not meeting SAN 

plane, Transformation 
Splitting

Classification Binary Acc.: 96.3

[47] Fetal Brain 
Abnormality MRI Images KNN

Segmentation, Contrast 
Enhancement, Feature 

Extraction, Feature 
Reduction

Classification Binary Acc.: 95.6

[60] Brain Maturity MRI Images Machine Learn-
ing Algorithms

Segmentation, Exclusion 
of Images Regression

Biometric 
Parameters 
Calculation

Acc.: 91

[43] Brain Maturity fMRI Images SVMs SVR
Removal of noise, Trans-

formation, Low-pass 
filtration

Classification 
+Regression 

Birth Gesta-
tional Age Acc.: 84

[61] Brain Maturity Ultrasound 
Images

Random Forest 
Regression

Cropping, Bandpass Fil-
tration, Parameterization Regression Gestational 

Age RMSE: 0.97

[45] Prediction of 
Gestational age MRI Images Attention-guid-

ed ResNet-50
Segmentation, Artifacts 

Removal, Transformation Regression Gestational 
Age R2: 0.945

[46] Fetal Maturity sMRI ResNet101V2
Segmentation, Trans-

formation, Feature 
Extraction

Regression Brain Age MAE: 0.97

[48] Congenital CNS 
Malformation

Neuro-sono-
graphic images CNN-YOLOv3

Labelling, Segmentation, 
Transformation, Motion 

Correction

Pattern Recog-
nition Multi-class Acc.: 0.99

b) Fetal Heart Anomalies

Due to its constant motion and small size, the fetal heart is an 
intricate organ to study and track. The most prevalent fetal heart 
malformations are congenital heart diseases [59]. Sonographers 
use an ultrasound anomaly scan to diagnose fetal malformations 
during the 1st or 2nd trimester of pregnancy. Nevertheless, congeni-

tal cardiac disease detection rates are still low [60]. Owing to these 
difficulties, AI algorithms have emerged to automate ultrasound 
evaluations of fetus in order to increase prediction rates and fetal 
heart evaluation accuracy [61]. Table 4 summarizes the most recent 
studies which have developed ML and DL algorithms to detect or 
predict fetal heart diseases.

Table 4: Summarized Literature on the applications of AI algorithms for the prediction of heart abnormalities in fetus using ultraso-
nography and MRI.

Citation Target Input Architectures Pre-Processing Outcome Output Results

[62]
Complex Con-
genital Heart 

Disease

Ultrasound 
Images Echocar-

diograms
CNNs

Segmenta-
tion, Contrast 
Enhancement, 

Transformation

Classification Binary AUC: 0.99

[63] Congenital Heart 
Disease CTU-UHB CNNs

Segmentation, 
Contrast En-
hancement

Classification Binary Acc.: 0.93

[64] Congenital Heart 
Disease

Fetal Echocar-
diogram

Random Forest 
Network

Segmentation, 
Augmentation, 
Transformation

Classification Binary ROC: 0.94

[65] Fetal Heart 
Diseases

Fetal Electrocar-
diogram KNN

Removing 
missing values, 
Normalization

Classification Binary Acc.: 0.92

[62] Fetal Heart Rate Fetal Heart Rate 
Signals 8-layer CNN

Removal of 
Noise, Wavelet 

Transform

Acidemia Pre-
diction Binary Acc.: 97.82

[49] Congenital Heart 
Disease

Color Doppler 
Ultrasound 

Examination

AI segmentation 
algorithm

Normalization, 
Transformation Segmentation ROI Acc.: 99
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AI Algorithms

A lot of machine learning and deep learning algorithms are be-
ing utilized for the prediction of fetal brain and heart anomalies. 
This part of the review concludes the most commonly used algo-
rithms for fetal analysis. Machine Learning (ML) lets computers 
teach themselves to improve at specific tasks over time, without 
needing explicit programming for every step. Neural networks 
organized into multiple layers (usually more than four, up to hun-
dreds) are the basis of a particular kind of machine learning called 
Deep Learning (DL). In computer vision, image classification works 

by automatically finding hidden patterns in images, layer by layer. 
This lets the computer “understand” the image and make predic-
tions. The relationship between AI, ML, and DL is illustrated in Fig-
ure 2, which also provides examples of ML techniques like logistic 
regression, random forests, and support vector machines, as well 
as DL techniques like convolutional and recurrent neural networks. 
Numerous additional machine learning techniques have been cre-
ated, each with advantages and disadvantages depending on the 
particular issue. Although a thorough explanation of these tech-
niques is outside the purview of this review, we do point the reader 
toward some very good online learning resources.

Figure 2: AI algorithms which are being utilized in fetal brain and heart anomaly detection.

“Supervised” and “unsupervised” learning techniques comprise 
the broad categories of machine learning techniques. When there 
is labeled training data available, supervised learning works best. 
The algorithm learns how to make particular predictions from the 
data and applies that knowledge to new, unlabeled data. Unsuper-
vised learning is another technique. Unlike supervised learning 
where data is labeled, unsupervised learning gives the algorithm 
unlabeled data and asks it to identify patterns or groupings within 
that data on its own. Since supervised learning is the focus of most 
of the medical AI literature, unsupervised learning can be an ex-
tremely useful technique for spotting patterns in patient data that 
have never been noticed before.

In medical AI, neural networks are the state-of-the-art. The 
creation of these models has led to superhuman performance in 
some medical tasks. Numerous neural network types have been 
created to work best for particular tasks (e.g., recurrent networks 
for language processing, and convolutional networks for computer 
vision). Convolutional Neural Networks (CNNs) have been imple-
mented to analyze images obtained through fetal echocardiogra-

phy and second-trimester screening scans. This analysis focuses 
on fetuses between 18 and 24 weeks of gestation. They discovered 
that it was possible to differentiate between the presence of inborn 
cardiac anomalies and normal heart development [60,62]. Neural 
networks are composed of multiple layers of interconnected pro-
cessing units known as perceptron’s. Data, such as an image from 
a fetal echocardiogram, is fed into the first layer. Each subsequent 
layer builds upon the previous one, progressively extracting more 
complex features from the data as it travels through the network. 
This layered processing architecture allows the network to learn 
and make predictions based on the information it has analyzed.

Image Pre-Processing and Post-Processing

Obtaining high-quality images of a constantly moving target is 
one of the main challenges in fetal imaging, and motion-correction 
and pre-processing tools offer promising solutions. Traditionally, 
this required a skilled technician to re-acquire sequences and ad-
just acquisition planes on a regular basis. This requires a lot of time 
and is subject to operator variability. Pregnant patients lying mo-
tionless in an enclosed magnetic resonance imaging scanner may 
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find it difficult to endure prolonged scan times. Fetal motion correc-
tion that is accurate and automated during initialization may result 
in better-quality images and possibly shorter scan times.

S Oldham, et al. [63] described a deep learning algorithm that 
used 15 key points to automatically detect fetal landmarks and 
estimate fetal poses. This allowed an automated parameter read-
justment and potentially save technician time and MRI acquisitions. 
The researchers achieved a high degree of accuracy in predicting 
fetal pose using their model. The mean error between the predicted 
pose and the actual pose acquired was less than 4.5 millimeters. 
This rapid prediction (under 1 second) was achieved by comparing 
the model’s output with real fetal pose data.

Time-efficient and repeatable tissue segmentation can be 
achieved through the use of artificial intelligence algorithms for im-
age post-processing. Recent works have focused a lot of attention 
on the fetal brain. Historically, 2D images have been manually de-
lineated to create 3D reconstructions of the fetal brain. N Khalili, et 
al. [64] reported the successful segmentation of a varied set of fetal 
brain, as well as fetal brain images deteriorated by artifact, using 
the U-net algorithm. Biparietal (BPD) and trans-cerebellum diam-
eter, which are typically measured manually, can also be accurately 
performed by a CNN.

Performance Metrics

AUC was used by a few articles in this review, while the accu-
racy metric was used by mostly. Just 61.3% of the studies assessed 
sensitivity. Many studies (38%) evaluated performance with limit-
ed methods and lacked details on accuracy. While focused on creat-
ing good prediction systems for fetal complications, none explored 
practical use in clinical settings.

Traditional AI Applications in Fetal Imaging

This part of the review provides a brief overview of the conven-
tional techniques which are being utilized in fetal analysis through 
various imaging modalities. Finding the correct fetal position 
during an ultrasound (fetal standard plane) heavily relies on the 
expertise of the technician. However, challenges arise because ul-
trasound images can vary significantly within the same exam (high 
intra-class variability) and appear quite different between different 
pregnancies (low inter-class similarity). This makes it difficult to 
develop automated systems that rely on pre-programmed image 
recognition [65]. AI is applicable in this situation. Using their fea-
ture representation capabilities, DCNNs can distinguish between 
similar ultrasonic views without the need for any manually created 
features.

AI algorithms are also playing a role in the intelligent measure-

ment of head circumference. For the purpose of determining fetal 
abnormalities, assessing fetal growth parameters, developmental 
progress, establishing gestational age and weight, HC is an import-
ant biometric indicator [66,67]. Interobserver variation and partial 
boundary missing in cranial ultrasonography images can affect the 
accuracy of fetal HC measurement. Low contrast and artifacts are 
also problems with ultrasound images. Because of this, even sonog-
raphers with extensive experience find that measuring fetal HC by 
hand is difficult and time-consuming. In fetal ultrasound, the pre-
cise and effective quantification of HC is essential.

The primary factor used to determine fetal weight is abdominal 
circumference [68], which has significant clinical significance when 
assessing fetal development and performing early screening for 
oversized fetuses or intrauterine growth restriction [69]. Reducing 
fetal morbidity and mortality from these diseases can be achieved 
by increasing the measurement’s accuracy. Sonographers in clinical 
practice are required to manually locate the standard plane of the 
abdomen. The accuracy of measuring AC can be impacted by vari-
ations in fetal posture, oligohydramnios, and the thickness of the 
abdominal wall in pregnant women [68,69].

To lessen the workload on sonographers, a quick and precise 
way to measure AC is needed. Segmentation of the fetal abdomen 
in ultrasound images is crucial for clinical applications. CNNs have 
demonstrated exceptional performance in this task compared to 
other methods. Additionally, measuring the Nuchal Translucency 
(NT), the fluid buildup at the back of the fetal neck [70], is import-
ant. Increased NT thickness can be associated with higher risks of 
birth defects like Down syndrome and poor pregnancy outcomes 
[70], [71,72]. To accurately measure NT thickness and enable the 
early detection of fetal structural abnormalities and genetic defects, 
the fetus should be placed in the standard sagittal plane. Neverthe-
less, it is challenging to obtain intelligent NT thickness measure-
ment and standard plane acquisition. These difficulties include the 
fetus’s mobility in the early stages of gestation, the short fetal pa-
rietal rump length, and the low signal-to-noise ratio of ultrasound 
images. Experts spend 25.56% less time on critical biometric tasks 
than unskilled sonographers [72].

Gestation age estimation is a significant additional use of AI in 
conjunction with fetal brain ultrasonography. Early pregnancy uses 
ultrasound measurements of fetal landmarks as a proven method 
for estimating gestational age. But as time passes and fetal growth 
and development variability is ignored, the error in ultrasound-es-
timated Gestational Age (GA) increases, and in certain studies, the 
error exceeds two weeks [72,73]. Thus, it is worthwhile to investi-
gate the creation of a precise and trustworthy model for mid- and 
late-stage GA assessment (Figure 3).
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Figure 3: An overview of the use of AI in fetal ultrasonography. Three popular AI models for medical images are shown in the figure: RNN, U-Net, 
and CNN. The primary goals of current AI applications in fetal ultrasonography are disease diagnosis, biometric measurement, and standard plane 
detection.

Discussion
Several papers on the application of ML and DL to fetal ul-

trasound and MRI assessment are included in this review. DL al-
gorithms obtain high-performance predictions by extracting im-
portant features from a small number of training samples using a 
CNN with multiple hidden layers. By automating the identification 
of fetal heart and brain, the neural networks are intended to im-
prove fetal imaging assessment procedures. This will maximize the 
technique’s accuracy and reduce examination time. The reviewed 
studies described a wide range of techniques, all of which were 
successful in meeting their goals by obtaining accuracy rates high-
er than 90% when it came to identifying the fetal brain and heart 
anomalies or their biometric measurements [74,75]. These results 
represent an improving accuracy and automation of fetal parame-
ter estimations. The most prevalent birth defects in the heart are 
congenital cardiac conditions [59]. The goal of integrating ML and 
DL into ultrasonography evaluations is to improve detection rates 
of congenital cardiac conditions with greater accuracy. Research 
shows AI algorithms can effectively identify fetal structures as early 
as the first trimester, regardless of gestational age. This paves the 
way for developing a reliable protocol using Deep Learning (DL) ar-
chitectures to create an automated and intelligent clinical decision 
support system specifically for early-stage fetal echocardiography.

The emergence of such algorithms highlights the adaptabili-
ty of AI in fetal imaging. AI has the potential to improve antenatal 
care by offering more precise and effective ways to recognize and 
diagnose fetal abnormalities. These developments highlight how AI 
is revolutionizing the fetal analysis and present a bright future for 
advancements in fetal healthcare. With a 1% incidence rate, anom-

alies of the central nervous system rank second among congenital 
fetal malformations [58]. With high accuracy rates of up to 99% in 
identifying fetal brain standard planes, AI-assisted ultrasound di-
agnosis presents a viable substitute screening technique for fetal 
malformations of the central nervous system. A remarkable accura-
cy of over 96% has been achieved in the detection of fetal involving 
congenital brain anomalies [74]. 

This method highlights the effectiveness of AI algorithms as 
useful resources for novice medical practitioners that can greatly 
aid in enhancing diagnostic proficiency. Sonographers can measure 
the nuchal translucency in cases with Down syndrome and auto-
matically identify the neck region in ultrasound images with the 
help of artificial intelligence. Our thorough analysis covers a wide 
range of ML and DL algorithms, current research, the benefits and 
drawbacks of each, possible roadblocks, and the expected uses of 
these algorithms in gynecology. This extensive study makes it clear 
that AI has a great deal of promise for antenatal diagnosis especially 
in fetal abnormalities. In fetal medicine, it may overcome diagnostic 
obstacles, expand available treatment options, and ultimately lead 
to better patient outcomes.

Challenges and Limitations
This review found a gap in research exploring the full potential 

of Machine Learning (ML) and Deep Learning (DL) for analyzing 
fetal ultrasounds and MRIs. While many studies focused on fetal 
brain image analysis and data processing (segmentation), there’s a 
lack of research on applying these techniques for diagnosis. Numer-
ous use cases are demonstrated, including those for automated fe-
tal biometric measurements [75], prognostication [9], and disease 
classification [48].
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Training and testing AI algorithms for fetal heart and brain 
anomaly prediction are hampered by small datasets, typically un-
der 200-400 cases, often originating from a single source. To bridge 
this gap and ensure clinical relevance for diverse populations, fos-
tering international collaboration is crucial. This would involve 
data sharing, establishing multicenter databases, and strengthen-
ing scientist-clinician partnerships.

Research on applying AI for disease classification and progno-
sis in fetal MRI has been limited. The inherent complexity of the 
task and the requirement for large datasets of rare fetal conditions 
pose significant challenges. For instance, [76-81] tested CNN’s abil-
ity to detect brain abnormalities using 225 fetal MRIs of varying 
gestational ages that are publicly available. This resulted in a 95% 
accuracy rate in identifying pathologies such as polymicrogyria, 
agenesis of the corpus callosum, colpocephaly, and Dandy-Walker 
spectrum malformations among other abnormal fetal brains. While 
radiologists experienced in interpreting fetal MRI studies would be 
able to identify these particular pathologies with ease, using this 
algorithm. However, it could be helpful in prioritizing which MRI 
studies need to be reviewed immediately over those that are not.

Based on our scoping review and our own thoughts, we think 
there are a few gaps that could open up interesting directions for 
future fetal imaging techniques and artificial intelligence research. 
Overall, what we found lacking was research on the potential ap-
plications of Natural Language Processing (NLP) in clinical gover-
nance and communication of important findings to clinicians. Addi-
tionally, very few image classification studies had been published 
to support the diagnosis and prognostication of fetal ultrasound 
and MRI, and even fewer publications contributed to the real-world 
evidence of enhanced clinical workflow and efficiency in practice. 
Given the serious consequences and high stakes associated with in-
accurate fetal imaging results, it will be crucial to demonstrate the 
reliability of any new technology before implementing it routinely 
and to pursue patient acceptability.

Conclusion
Deep learning (DL), a subset of artificial intelligence, is so good 

at identifying patterns in images, it is especially useful for practi-
tioners who use image-based data to diagnose and make decisions 
in healthcare settings. AI is positioned as a potential adjunct or 
alternative screening method for fetal anomaly identification due 
to its significant advancements in recent years and its improved 
capacity to detect prenatal fetal brain and heart malformations. 
Research demonstrates AI’s potential for precise cardiac and brain 
structure detection. Studies have shown that CNNs in particular, 
perform as well as experts in terms of prediction and similarity 
when it comes to differentiating between cardiac or brain anoma-
lies and normal development. Artificial Intelligence (AI) tools have 
proven remarkably accurate at automatically measuring fetal head 
biometry and identifying brain structures and planes. Additionally, 
there was a decrease in false-negative results in the diagnosis of 
fetal brain abnormalities and anomaly detection performance that 
was comparable to that of the experienced sonographers. It is clear 

that Artificial Intelligence (AI) has the potential to improve prenatal 
care by offering more precise and effective ways to recognize and 
diagnose fetal abnormalities. These developments highlight how AI 
is revolutionizing the field and present a bright future for advance-
ments in fetal healthcare.
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