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Introduction
Accurately identifying protein-small molecule interactions is 

the cornerstone of modern drug development. These molecular 
interactions have enabled elucidation of the underlying biological 
processes, resulting in effective in silico therapeutic design. As the 
primary functional molecules in cells, proteins play critical roles 
in virtually all biological activities, from catalyzing metabolic reac-
tions to transmitting signals within and between cells. Therefore, 
understanding how proteins interact with exogenous molecules, 
including small drug-like compounds, is essential for elucidating 
function and rational design of new drugs and employment of a ra-
tional poly-pharmaceutical approach.

Identifying the interactions between proteins and small mol-
ecule compounds can reveal new therapeutic targets. Many infec-
tious diseases and cancers arise from aberrant protein interactions. 
By understanding these interactions, researchers can identify criti-
cal nodes within cellular pathways that, when modulated by a drug, 
may correct the underlying disease mechanism [1].

The inherent complexity of biological systems makes it chal-
lenging to predict how a drug will interact within the human body. 
Traditional methods often failed to accurately model these inter 

 
actions, leading to failure of successful endpoints in clinical trials.  
Although the advent of advanced computational technologies has 
attenuated failure rate for drug development, it remains high. The 
reasons for these failures are highly variable, but most common-
ly include issues related to efficacy, safety, and pharmacokinetics. 
Approximately 90% of drug candidates fail during the preclinical 
phase due to unacceptable toxicity or lack of efficacy. In Phase 1, 
approximately 30% of the remaining drugs fail. In Phase 2, 67% of 
these remaining drugs fail. In Phase 3, another 40% of drugs that 
passed Phase 2 fail due to unforeseen side effects or inability to 
reach the defined endpoint [2,3].

Modern machine learning tools in computational biology, ex-
emplified by the GATC Health multi-omic therapeutics platform, 
have revolutionized the ability to predict protein-molecule interac-
tions with high accuracy. These tools integrate deep learning with 
vast amounts of structural and interaction data, enabling research-
ers to model complex molecular systems that were previously chal-
lenging to study experimentally. This integration of computational 
predictions with experimental data accelerates the drug discovery 
pipeline, from target identification to lead optimization.
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As a validation study, a blind challenge was conducted to as-
sess the performance of these advanced, predictive capabilities of 
the GATC platform in a fair and unbiased manner and provide a 
standardized benchmark against which different AI platforms can 
be compared. Using the same dataset and evaluation criteria, GATC 
obtained an objective measure of the strengths and weaknesses of 
various algorithms within the platform. The blind challenge serves 
as a continuous checkpoint to assess the progress in the platform 
over time. By comparing the performance of the GATC platform, ad-
vancements can be tracked and areas that require further improve-
ment can be identified. 

Methods
University of California, Irvine, (UCI) Department of Pharma-

ceutical Sciences lab partnered with GATC to administer the evalu-
ation challenge ensure a rigorous, fair, and unbiased evaluation of 
the algorithms through a blind challenge. UCI served as the neutral 
party to handle the test data and evaluation process. GATC did not 
have access to the test set.

Data Curation 

The identity and sources of GATC’s training data for models 
used in this study were fully disclosed to the UCI Lab. This ensured 
that data curated by the UCI Lab for the challenge was known to be 
outside of GATC’s training data. GATC also provided the identity of 
available biological targets that the GATC platform could predict. 

The UCI Lab then curated (from the literature and/or other 
sources) data outside GATC’s training data concerning binding of 
molecules to these targets as the basis for running a blind challenge. 

This allowed for focus on chemical compounds that did not 
overlap with those in GATC’s training data, but which have been 
experimentally tested for binding to targets the GATC platform cov-
ers, as provided by GATC. 

For the purposes of data curation and the blind challenge, a 
compound was considered “active” if it had a measured potency 
(e.g. IC50 or Kd or similar) better than 1 micromolar and “inactive” 
if it has a measured potency worse than 10 micromolar. 

The UCI Lab then collected a relatively balanced set of data 
which included a roughly equal number of active and inactive 
compounds, with the total number being over 1000 and less than 
10,000 for each challenge. 

The resulting datasets were then prepared by the UCI Lab for 
the blind challenges in the form of a single dataset for each chal-

lenge with compound IDs and SMILES strings, called the “predic-
tion dataset”. 

The UCI Lab separately stored and held in secrecy an “answer 
key” with assay results/activities and other metadata including tar-
get UNIPROT ID, binary activity of true or false, and measured activ-
ity, as well as data source, among others for the challenge.

Blind Challenges

Following curation of data for the blind challenges, the UCI Lab 
provided GATC with an example file illustrating the dataset format, 
to ensure GATC could parse the data properly. 

Once the data format transfer was agreed upon, the UCI Lab 
coordinated with GATC and set up a synchronous meeting during 
which the “prediction dataset” will be provided to GATC and GATC 
will synchronously generate and return predictions to the UCI Lab, 
in a .csv format, including compound ID, SMILES, binary activity, 
and UNIPROT ID of target. 

Following receipt of this data and verification that the data can 
be parsed properly, the UCI Lab returned the answer key for GATC’s 
use, concluding the blind challenge.

Key measures for each challenge were determined to be the 
True Positive Rate or Sensitivity, and the True Negative Rate or 
Specificity of the prediction data set as compared to the original, 
blind challenge dataset for activity vs inactivity for each combina-
tion of molecule and target.

As each molecule presented in the challenge dataset may not 
have corresponding activity for each target available on the GATC 
platform, predictions were made for every molecule/target combi-
nation and included in the prediction dataset. 

Only predictions with matching molecule/target combinations 
in the challenge dataset were included in results calculations.

Results
The test molecules were confirmed to be previously unknown 

as GATC to curate a fair blind challenge. For each of the challenges, 
the GATC platform processed the molecule data within hours and 
returned its predicted results. Only after receiving these results did 
the UCI Lab release the target activation data for the challenge mol-
ecules to GATC. 

The results below are taken from a comparison of the activation 
data curated and provided by the UCI lab in each challenge dataset 
and the blind predictions made by the GATC platform and included 
in the prediction dataset for each of the (challenge 1,2).

Challenge 1: Specificity Screening - predictions by AI to screen for negative activation on biological targets. Key in assessing the safety and 
side-effects of a drug molecule.
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Challenge 2: Sensitivity Screening - predictions by AI to screen for positive activation on biological targets. Key in assessing efficacy of a 
drug molecule and secondary assessment of safety and side-effects.

Discussion
The performance of the GATC platform on identifying activity 

both on the safety and efficacy of drug candidates was sufficient 
to warrant use in risk assessment of drug candidates within the 
defined areas of work and on the most deleterious associated risk 
activities. There is relatively little data available to use in blind chal-
lenges that is not already used to train the GATC platform as the 
training has been extensive. In order to provide a good assessment 
of the platform’s capabilities, the blind data used for these challeng-
es was obtained from broader sources of public data by the Univer-
sity of California, Irvine. The data used for Challenge 2 includes a 
smaller number of targets, as defined by the safety assessment on 
higher-risk associations. This second set of challenge data has also 
been divided and GATC has held a portion in reserve to support on-
going research and platform improvements. 

The metrics reported are based on data filtered within cate-
gories of commercial interest based on prospective work in risk 
assessment within. The data filters used in this challenge do not 
necessarily encompass the entirety of possible interactions within 
the human body or interactions outside of the scope of commercial 
interest. Future work will include broader and more diverse tar-
gets. GATC reports that the targets were selected for a particular 
research focus, and the proprietary methods used by the GATC Sys-

tem to achieve the reported specificity and sensitivity are not stan-
dard and may be considered trade secrets.

Ideally, a future challenge might either add such optimizations 
to other comparator platforms or measure both sensitivity and se-
lectivity based on older standards of computational performance to 
avoid any potential bias in analysis across platforms which may not 
have such optimizations as the GATC platform. As such, the blind 
challenge is instrumental in fostering transparency, objectivity, and 
progress in the field of artificial intelligence by providing a stan-
dardized platform for evaluation and comparison.
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