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Abstract

Cardiovascular Diseases (CVDs) remain among the leading causes of death worldwide, highlighting the urgent need for tools that 
can support early diagnosis and intervention. This research explores the use of supervised machine learning techniques to predict 
cardiovascular risk using commonly available clinical and demographic data. The goal of this research is to develop accurate, inter-
pretable models that help the clinical department identify individuals at risk and improve decision-making in preventive cardiology. 
The research focuses on three widely used algorithms: Random Forest, XGBoost, and Support Vector Machine (SVM). The dataset 
used contains 14 key attributes collected from patient health records CDC (CDC: Centers for Disease Control and Prevention), in-
cluding main factors age, gender, blood pressure, cholesterol levels, chest pain type, and maximum heart rate. A thorough data pre-
processing pipeline is applied prior to model training. This includes handling missing values with imputation, removing duplicates, 
detecting. These steps help ensure clean, consistent input for the models. Results demonstrate that Random Forest outperformed 
the other models, achieving an accuracy of 84%, ROC-AUC score of 92%, precision 84%, F1-Score 84% and recall/sensitivity of 
84%. XGBoost exhibited comparable performance with slightly higher precision of 86%, accuracy of 82%, recall/sensitivity of 78%, 
F1-score of 82% and ROC-AUC of 91%, while Support Vector Machine (SVM) showed promise with accuracy of 70%, precision of 
67%, F1-Score of 76%, sensitivity/recall 88% and ROC-AUC 84% but is sensitive to feature scaling and lacked robustness in han-
dling non-linear patterns in the data. The models are further tested on hypothetical patient profiles to assess their ability to detect 
less obvious patterns in the data. These results reinforce the potential of ensemble machine learning methods to support early risk 
detection and assist clinicians in identifying high-risk patients. With proper integration, such models can serve as valuable tools in 
real-world healthcare settings.  
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Introduction 

Cardiovascular Diseases (CVDs) constitute a significant global 
health burden, accounting for approximately 17.9 million annu-
al deaths, as reported by the World Health Organization (WHO). 
These diseases encompass a wide spectrum of heart and vascu-
lar conditions, such as coronary artery disease, heart failure, and 
arrhythmias. Despite advancements in medical diagnostics, the 
early detection of CVDs remains a critical challenge, as tradition 

 
al diagnostic methods often rely on invasive testing and subjective 
clinical interpretations. This underscores the urgency of develop-
ing more efficient, non-invasive, and reliable methods to predict 
cardiovascular risk at an earlier stage. Machine Learning (ML), a 
subfield of artificial intelligence, has emerged as a transformative 
tool in healthcare, offering innovative approaches for predictive 
modeling and personalized medicine. ML algorithms excel in an-
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alysing large datasets and identifying complex patterns that may 
elude traditional statistical methods. By leveraging ML, it is possi-
ble to predict the presence of CVDs with improved precision, en-
abling timely interventions and reducing the likelihood of adverse 
outcomes. This study utilizes a dataset comprising 14 clinical and 
demographic variables such as age, gender, Chest Pain Type (cp), 
Cholesterol Level (chol), Resting Blood Pressure (trestbps), Fasting 
Blood Sugar(fbs), Resting Electrocardiographic Results(restecg), 
Maximum Heart Rate (thalach), Exercise-Induced Angina (exang), 
ST depression induced by exercise(oldpeak), slope of the peak 
exercise ST segment(slope), Number of major vessels(ca), thalas-
semia(thal), and target variable indicating the presence or absence 
of Cardiovascular Disease(CVD). These attributes represent signifi-
cant risk factors and clinical markers associated with cardiovascu-
lar health. The primary objective of this research is to evaluate the 
predictive capabilities of three widely used machine learning mod-
els Random Forest, XGBoost, and Support Vector Machine (SVM) in 
accurately classifying individuals as CVD-positive or CVD-negative.

Unlike previous studies that often rely on default model config-
urations, this research emphasizes multiple models and their com-
parison to optimize model performance. Additionally, it prioritizes 
metrics that are critical in healthcare settings, such as sensitivity 
(recall), to minimize false negatives cases where individuals with 
CVD might be incorrectly classified as healthy. Comparative analy-
sis of the models is conducted using metrics such as accuracy, pre-
cision, F1-score, and AUC-ROC, ensuring a comprehensive evalua-
tion of their effectiveness. Furthermore, the study extends beyond 
theoretical analysis by testing the models on unseen patient data to 
assess their real-world applicability. By focusing on both model op-
timization and practical deployment, this research aims to bridge 
the gap between academic study and clinical implementation. This 
research contributes to the growing body of literature on CVD pre-
diction by employing a comprehensive set of clinical features for 
model training and evaluation. Demonstrating the practical utility 
of predictive models in real-world diagnostic scenarios. The find-
ings presented in this study have the potential to enhance early de-
tection strategies for cardiovascular diseases, ultimately improving 
patient outcomes and reducing the global burden of CVDs.

Literature Review
In Deo (2015) [1] highlighted that despite the availability of 

large medical datasets and learning algorithms, machine learning 
has had limited clinical impact due to challenges in implementa-
tion and integration into healthcare systems. Meanwhile Obermeyer 
and Emanuel (2016) [2] discussed the future potential of big data 
and machine learning in clinical medicine, emphasizing that while 
predictive models show promise, their real-world success depends 
on effective integration into clinical workflows. And in 2017 Weng 
[3] applied supervised machine learning models such as random 
forests and logistic regression to routine clinical data and found 
that these models significantly outperformed traditional cardiovas-
cular risk prediction tools in accuracy and calibration. Meanwhile 
in 2018 Johnson [4] reviewed the landscape of artificial intelligence 

in cardiology, focusing on how deep learning, neural networks, and 
data fusion can enhance diagnostic accuracy, treatment personal-
ization, and workflow optimization. They concluded that AI holds 
transformative potential in cardiovascular care through data-driv-
en decision-making. In a study published by (Alotalibi, et al, 2019), 
the author aimed to investigate the utility of Machine Learning (ML) 
techniques for predicting heart failure disease. The study utilized 
a dataset from the Cleveland Clinic Foundation, and implemented 
various ML algorithms, such as decision tree, logistic regression, 
random forest, naive Bayes, and Support Vector Machine (SVM), to 
develop prediction models. A 10-fold cross-validation approach is 
employed during the model development process. The results in-
dicated that the decision tree algorithm achieved the highest ac-
curacy in predicting heart disease, with a rate of 93.19%, followed 
by the SVM algorithm at 92.30%. This study provides insight into 
the potential of ML techniques as an effective tool for predicting 
heart failure disease and highlights the decision tree algorithm as a 
potential option for future research. Whereas Mohan [5] presented 
a hybrid approach integrating SVM, KNN, and ensemble classifiers 
for heart disease prediction, achieving over 90% accuracy and ro-
bustness across multiple datasets. 

In a study conducted by Shah [6], the authors aimed to devel-
op a model for predicting cardiovascular disease using machine 
learning techniques. The data used for this purpose is obtained 
from the Cleveland heart disease dataset, which consisted of 303 
instances and 17 attributes, and are sourced from the UCI machine 
learning repository. The authors employed a variety of supervised 
classification methods, including naive Bayes, decision tree, ran-
dom forest, and K-Nearest Neighbor (KKN). The results of the study 
indicated that the KKN model exhibited the highest level of accura-
cy, at 90.8%. The study highlights the potential utility of machine 
learning techniques in predicting cardiovascular disease and em-
phasizes the importance of selecting appropriate models and tech-
niques to achieve optimal results. And Krittanawong [7] reviewed 
artificial intelligence methods including deep learning and neural 
networks, concluding that such technologies hold strong potential 
for enabling precision cardiovascular medicine and individualized 
treatment plans. In 2020 Guo [8] analyzed AI publications to un-
derstand the dynamic and longitudinal bibliometric analysis of 
health care. The major health problems studied in AI research are 
cancer, depression, Alzheimer disease, heart failure, and diabetes. 
Artificial neural networks, support vector machines, and convo-
lutional neural networks have the highest impact on health care. 
This research provides a comprehensive overview of the AI-relat-
ed research conducted in the field of health care, which helps re-
searchers, policy makers, and practitioners better understand the 
development of health care-related AI research and possible prac-
tice implications and Abdeldjouad [9] proposed a hybrid diagnostic 
model combining decision trees and SVM for heart disease predic-
tion. Using healthcare datasets, they achieved improved diagnostic 
precision and reliability over traditional standalone models. Chicco 
and Jurman [10] demonstrated that using only two features serum 
creatinine and ejection fraction machine learning models like lo-
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gistic regression and SVM could accurately predict heart failure 
survival. In 2021 Ji [11] used wearable device based mobile health 
as an early screening and real-time monitoring tool to address this 
balance and facilitate remote monitoring to help improve the effi-
ciency and effectiveness of acute CVD patient management while 
reducing infection risk. Building on that Kishor and Jeberson (2021) 
[12] explored heart disease diagnosis using IoT-based sensing and 
machine learning models like Random Forest and Decision Trees. 
Their framework achieved high accuracy in remote monitoring and 
early detection. Hassan [13] aimed to predict coronary heart dis-
ease using various machine learning classifiers, including Support 
Vector Machines (SVM), Decision Trees, and Logistic Regression. 
Their model, trained on the UCI dataset, achieved high classifica-
tion accuracy, supporting ML’s effectiveness in CHD prediction. 
Meanwhile Gour [14] developed a machine learning framework for 
predicting heart attacks using models such as Naïve Bayes, Random 
Forest, and Logistic Regression. Their system demonstrated im-
proved accuracy and helped identify key risk features from patient 
datasets.

Subahi [15] introduced a modified self-adaptive Bayesian al-
gorithm within an Internet of Things (IoT) system for smart heart 
disease prediction. Their system enabled real-time, efficient, and 
accurate diagnosis in IoT healthcare environments. Whereas Ab-
dalrada [16] utilized machine learning to predict the co-occurrence 
of diabetes and cardiovascular disease. Through a retrospective co-
hort study, their models uncovered critical comorbidity patterns, 
supporting preventive health strategies. And Truong [17] applied 
ML techniques to fetal echocardiography for early screening of con-
genital heart disease. Their models achieved high sensitivity and 
specificity, improving prenatal diagnosis accuracy. In 2023 Saeed-
bakhsh [18] performed research on Coronary Artery Disease (CAD) 
which is known as the most common cardiovascular disease. The 
aim of this study is to detect CAD using machine learning algo-
rithms. In this study, three data mining algorithms Support Vector 
Machine (SVM), Artificial Neural Network (ANN), and random for-
est are used to predict CAD using the Isfahan Cohort Study dataset 
of Isfahan Cardiovascular Research Center. 19 features with 11495 
records from this dataset are used for this research. All three al-
gorithms achieved relatively close results. However, the Support 
Vector Machine (SVM) had the highest accuracy compared to the 
other techniques. The accuracy is calculated as 89.73% for Support 
Vector Machine (SVM). The Artificial Neural Network (ANN) algo-
rithm also obtained the high area under the curve, sensitivity and 
accuracy and provided acceptable performance. Age, gender, Sleep 
satisfaction, history of stroke, history of palpitations, and history of 
heart disease are most correlated with target class. Eleven rules are 
also extracted from this dataset with high confidence and support. 
In this study, it is shown that machine learning algorithms can be 
used with high accuracy to detect Coronary Artery Disease (CAD). 
Thus, physicians can perform timely preventive treatment in pa-
tients with CAD. Building on this in 2023 Baghdadi [19] employed 
ensemble learning techniques on real-world cardiovascular patient 
data and achieved high accuracy in early detection and diagnosis, 

demonstrating the effectiveness of advanced machine learning ap-
proaches.

In 2024 Vyshnya [20] analysed to develop a clinical decision 
support tool that can predict Cardiovascular Disease (CVD) risk 
with high accuracy while requiring minimal clinical feature input. 
In this study, they proposed a robust feature selection approach 
that identifies five key features strongly associated with CVD risk, 
which have been found to be consistent across various models. The 
machine learning model developed using this optimized feature set 
achieved state-of-the-art results, with an AUROC of 91.30%, sen-
sitivity of 89.01%, and specificity of 85.39%. Furthermore, the in-
sights obtained from explainable artificial intelligence techniques 
enable medical practitioners to offer personalized interventions by 
prioritizing patient-specific high-risk factors. Their work illustrates 
a robust approach to patient risk prediction which minimizes clin-
ical feature requirements while also generating patient-specific in-
sights to facilitate shared decision-making between clinicians and 
patients. In 2019, Saqlain [21] developed a heart disease diagnos-
tic system using feature subset selection to enhance classification 
performance. Three algorithms -mean Fisher score-based, forward, 
and reverse selection -were used to identify optimal features, which 
were then classified using an SVM with an RBF kernel. Validated 
on four UCI datasets (Cleveland, Hungary, Switzerland, SPECTF), 
the model achieved accuracies ranging from 81.19% to 92.68%. 
In 2023, Bhatt [22] proposed a cardiovascular disease prediction 
model using k-modes clustering with Huang initialization and ma-
chine learning classifiers (DT, RF, MP, XGB). Trained on a 70,000-in-
stance Kaggle dataset, the models were optimized via Grid Search 
CV. The Multilayer Perceptron with cross-validation achieved the 
highest accuracy of 87.28%, with AUC values of 0.94-0.95 across 
models, demonstrating strong predictive performance.

Dataset Description
The dataset used in this study contains real-world clinical data 

collected from patients undergoing cardiovascular examinations 
CDC. It consists of 14 features that include a combination of de-
mographic, clinical, and diagnostic indicators commonly associat-
ed with cardiovascular health. These features include age, gender, 
resting blood pressure, serum cholesterol, fasting blood sugar, chest 
pain type, resting electrocardiographic results, maximum heart 
rate achieved, exercise-induced angina, ST depression, the slope of 
the peak exercise ST segment, number of major vessels colored by 
fluoroscopy, thalassemia status, and a target variable indicating the 
presence or absence of cardiovascular disease. Each entry in the 
dataset represents a single patient profile, and the dataset is struc-
tured such that the target variable is binary labeled as 1 for patients 
with a diagnosed cardiovascular condition and 0 for those without. 
This setup is ideal for binary classification using supervised ma-
chine learning. The original dataset underwent an initial review to 
identify missing values, duplicates, and potential inconsistencies. 
All values are either numerical or categorical, with no free-text en-
tries, making it well-suited for preprocessing and modeling. The 
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balanced representation of both healthy and affected individuals 
in the target variable supports fair training and evaluation across 
models.

Sample Preview of the Dataset
To understand the structure of the dataset, a quick preview 

helps highlight how the patient records are organized. Each row 
represents a single individual, with various columns capturing their 
clinical measurements and diagnostic indicators. Table 1 shows the 
first and last five rows of the dataset and Table 2 shows all the 14 
dataset attributes features and helps confirm that the dataset is 
formatted properly before applying any preprocessing or model 
training.

Table 1: First and last five rows of the dataset.

Age Gen-
der cp trest-

bps chol fbs rest-
ecg thalach exang old-

peak slope ca Thal tar-
get

63 1 3 145 233 1 0 150 0 2.3 0 0 1 1

37 1 2 130 250 0 1 187 0 3.5 0 0 2 1

41 0 1 130 204 0 0 172 0 1.4 2 0 2 1

56 1 1 120 236 0 1 178 0 0.8 2 0 2 1

57 0 0 120 354 0 1 163 1 0.6 2 0 2 1

: : : : : : : : : : : : : :

: : : : : : : : : : : : : :

59 1 0 164 176 1 0 90 0 1 1 2 1 0

57 0 0 140 241 0 1 123 1 0.2 1 0 3 0

45 1 3 110 264 0 1 132 0 1.2 1 0 3 0

68 1 0 144 193 1 1 141 0 3.4 1 2 3 0

57 1 0 130 131 0 1 115 1 1.2 1 1 3 0

57 0 1 130 236 0 0 174 0 0 1 1 2 0

Table 2: Dataset Attributes.

Feature Variable Min and Max Values

Age Age Ages of Patients

Gender Gender
0= Female

1= Male

Chest Pain cp

0: Typical Angina

1: Atypical Angina

2: Non-Anginal Pain

3: Asymptomatic

Resting Blood Pressure

mmHg (millimeters of mercury)
trestbps

Min:94mmHg (Lowblood pressure)

Max:200

mmHg (Hypertension)

Cholestrol

Mgg/dl (milligrams per deciliter)
chol

Min: 126mg/dl

Max around 564mg/dl (High cholesterol)

Fasting Blood Pressure fbs
0: Fasting blood sugar <= 120 mg/dl

1: Fasting blood sugar > 120 mg/dl

Resting Electrocardiographic Results restecg

0: Normal 

1: ST-T wave abnormality

2: Left ventricular hypertrophy

Maximum Heart Rate Achieved

Bpm (beats per minute)
thalach

Min: 71 bpm

Max: 202 bpm
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Exercise-Induced Angina exang
0: No exercise-induced angina

1: Exercise-induced angina present

ST Depression oldpeak
Min: 0.0(no depression)

Max: 6.2 or more

Slope of Peak Exercise ST Segment slope

0: Upsloping

1: Flat

2: Downsloping

Number of Major Vessels

Colored by Fluoroscopy
ca 0-3: Number of vessels (0,1,2, or 3)

Thalassemia thal

3: Normal

6: Fixed Defect

7: Reversible Defect

Target Variable Target
0: No CVD 

1: CVD Present

Methodology
This methodology outlines the step-by-step approach followed 

for the analysis, training, evaluation, and comparison of machine 
learning models to solve the given problem. The data preprocessing 
phase ensures that the dataset is in its optimal form for training 
and evaluating machine learning models. Since the dataset contains 
no missing values, outliers, or unencoded categorical variables, the 
focus is on preparing the data to enhance model performance. The 
dataset is loaded into a Pandas Data Frame, and its structure is in-
spected using summary statistics and Exploratory Data Analysis 
(EDA). Anomalies or inconsistencies are not observed during this 
inspection.

As the dataset does not require handling of missing values or 
encoding of categorical variables, feature scaling is applied to stan-
dardize the numerical features. Standard scaling (z-score normal-
ization) is utilized to ensure that all features contribute equally 
during the training process, particularly for algorithms sensitive to 
feature magnitudes, such as Support Vector Machines (SVM). Fea-
ture selection is performed to reduce dimensionality and enhance 
model interpretability and efficiency. This process involves analyz-
ing a correlation matrix to identify and remove highly correlated 
features, implementing Recursive Feature Elimination (RFE) with a 
baseline model to rank feature importance, and utilizing tree-based 
feature importance methods (e.g., Random Forest and XGBoost) to 
exclude redundant or irrelevant features. The dataset is then split 
into training and testing subsets using an 80-20 stratified split. 
Stratified sampling ensures that the class distribution of the target 
variable is preserved in both subsets, enabling better generaliza-
tion during model evaluation. Finally, the pre-processed dataset is 
validated to confirm readiness for modeling. All features are appro-
priately scaled, the target variable’s distribution is verified, and the 
selected features are confirmed to be relevant. This preprocessing 

pipeline provides a robust foundation for model training and eval-
uation.

Feature Visualization and Distribution Analysis

Before proceeding to model development, the cleaned dataset 
is explored visually to understand the relationships between fea-
tures and detect potential outliers using correlation heatmap, box-
plot of features. These insights provide foundational knowledge of 
how each variable may contribute to the prediction task.

Correlation Heatmap of Clinical Features

To identify potential relationships among numerical features, a 
correlation heatmap is generated. This plot highlights how strongly 
one feature varies in relation to another, which is crucial in under-
standing multicollinearity or identifying key predictors. Under-
standing the relationships between different clinical variables is 
crucial before model training. A correlation heatmap serves as a 
powerful visual tool to identify how strongly features are associat-
ed with each other and with the target variable. High correlations 
might indicate redundancy, while moderate correlations can guide 
feature selection and engineering.

In the Figure 1 below, a correlation matrix is constructed using 
Pearson’s correlation coefficients across all numerical variables in 
the dataset. Warmer colors (red) indicate strong positive correla-
tions, while cooler shades (blue) reflect negative relationships. This 
visualization helps identify trends such as the inverse relationship 
between maximum heart rate (thalach) and age, or the positive 
correlation between Chest Pain type (cp) and the target variable, 
which denotes cardiovascular risk. Such insights are valuable in un-
derstanding data behavior, especially for selecting influential pre-
dictors and mitigating issues like multicollinearity during model 
development.
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Figure1: Correlation matrix between all numerical features in the dataset.

Boxplot Visualization

A boxplot visualization is also used to inspect the spread of con-
tinuous features and detect any remaining outliers post-cleaning. 
To understand the distribution and detect any remaining anomalies 
in the numerical data after preprocessing, a boxplot is generated 
for all continuous variables. This visualization helps in identifying 
the central tendency, spread, and presence of outliers across unique 
features. Boxplots, also known as whisker plots, are crucial tools 
in exploratory data analysis to visualize the distribution, spread, 
and potential outliers in a dataset. They summarize a dataset using 
five key statistical metrics: minimum, first Quartile (Q1), median, 
third Quartile (Q3), and maximum. The central line inside the box 
represents the median, while the edges of the box indicate Q1 and 
Q3, capturing the Interquartile Range (IQR), which is the middle 

50% of the data. Whiskers extend to the smallest and largest val-
ues within 1.5 times the IQR from Q1 and Q3, respectively, and any 
points outside this range are plotted as outliers. Figure 2, the box-
plots illustrate the distributions of various features in the dataset. 
Features such as age, chol, and trestbps show a relatively consistent 
distribution with some outliers, while features like thalach and old-
peak highlight potential anomalies that may require further inves-
tigation. Binary features like fbs, exang, and target exhibit distinct 
categorical behavior, as indicated by their discrete values. The thal 
and target provide further insights. The thal feature demonstrates 
a clear range with one apparent outlier, while the target feature, 
being binary, shows distinct categorical values of 0 and 1. Together, 
these visualizations enable a deeper understanding of the dataset’s 
structure, variability, and the presence of any anomalies that may 
influence subsequent modeling efforts.

Figure 2: Boxplot for features.
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Model Evaluation Methods

The Cardiovascular Disease (CVD) dataset is split into training 
and testing in an 80 % and 20 % ratio. The performance of the two 
experiments is compared. The classification evaluation metrics 
used are accuracy, precision, Recall, F1 score and area under the 
ROC curve. The accuracy explains the overall model performance. It 
explains the percentage of the accurate predictions the model made 
to the total predicted class expressed as Accuracy _ *100TP TN

TP TN FN FP
=

+ + +

Precision measures how suitable or precise is the model when 
it identifies a person with cardiovascular problem, mathematically 
expressed as Precision *100TP

TP FP
=

+

Sensitivity(recall) measures the percentage of people with CVD 
cases who are correctly identified as having the condition; Recall/
Sensitivity *100TP

TP FN
=

+

While specificity measures those who are correctly identified 
as not having the CVD problem; the sensitivity/recall and speci-
ficity aims to reduce False Negatives (FN) and False Positives (FP) 
respectively. F1_Score is the harmonic mean of precision and recall. 

The increase of F1_Score is proportional to the increase of precision 
and recall hence better the model performance. F1_Score performs 
better even when class distribution is imbalanced, and the values 
of the false positives and false negatives are different, F1-Score is 
appropriate. The mathematical expression of F1_score is

*F1 score 2* Precision Recall
Precision Recall

=
+

The area under the Receiver Operating Characteristic (AUC-
ROC) curve is also used to measure the performance of the two 
experiments. The AUC-ROC shows the ability of an algorithm to 
classify those with CVD and those without CVD or positive and 
negative classes. It is a graphical tool that plots sensitivity (true 
positive rate) against specificity (false positive rate) for various 
classification threshold values. The True Positive Rate (TPR) is ex-
pressed as TPTPR

TP FN
=

+
and False Positive Rate (FPR) is expressed as

FPFPR
TN FP

=
+

.The more the curve expands to a coordinate (0,1) on x, 
y plane of the ROC area indicates the few false negatives and posi-
tives that indicate the model accuracy Table 3.

Table 3: Confusion Matrix.

Predicted Values
Actual Values

Yes (With CVD)  No (Without CVD)

Yes (With CVD) TP (True Positive) FP (False Positive)

No (Without CVD) FN (False Negative) TP (True Negative)

Model Implementation

In this study, three supervised classification models are imple-
mented to predict the likelihood of cardiovascular disease based 
on patient features: Support Vector Machine, Random Forest, and 
XGBoost. Each model represents a different approach to classifica-
tion, offering a balance between interpretability, performance, and 
complexity.

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a powerful supervised ma-
chine learning algorithm widely used for classification and regres-
sion tasks. It works by identifying the optimal hyperplane that 
separates data points of different classes in a feature space. The 
algorithm maximizes the margin, which is the distance between the 
hyperplane and the nearest data points from each class, known as 
support vectors. These support vectors are crucial as they directly 
influence the position and orientation of the hyperplane. For lin-
early separable data, SVM finds a straight hyperplane, while for 
non-linear data, it employs the kernel trick to map the data into a 

higher-dimensional space where linear separation is possible. Com-
mon kernel functions include linear, polynomial, Radial Basis Func-
tion (RBF), and sigmoid. SVM can handle both hard margins, where 
no misclassification is allowed, and soft margins, where some flexi-
bility is introduced to manage noisy or overlapping data. Its ability 
to work effectively in high-dimensional spaces and its robustness 
against overfitting make SVM a popular choice in applications like 
image recognition, text classification, and bioinformatics. However, 
it may require careful tuning of hyperparameters and kernel selec-
tion, and its computational cost can be high for large datasets.

Confusion Matrix - Support Vector Machine (SVM)

The confusion matrix Figure 3 illustrates the model’s predic-
tion performance by showing the number of true positives, true 
negatives, false positives, and false negatives.

The model achieves an accuracy of 70%, precision 67%, recall/
sensitivity of 88% and ROC-AUC of 84%. It correctly classifies most 
of the cases but misclassifies 18 out of 61, showing room for im-
provement through more advanced ensemble methods.
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Figure 3: Confusion Matrix of SVM.

Random Forest

Random Forest is an ensemble-based algorithm that builds 
multiple decision trees and merges their results to improve ac-
curacy and reduce overfitting. It uses bagging (bootstrap aggre-
gation) and random feature selection to ensure diversity among 
trees, which enhances generalization on unseen data. This model 
achieved an accuracy of 84%. It is trained using the same processed 
dataset. During training, the number of trees (n_estimators) and 
other hyperparameters can be adjusted for better results. Random 
Forest tends to perform well on complex, non-linear datasets and 
provides built-in feature importance scores that help explain pre-
dictions. To improve upon the baseline performance of logistic re-
gression, a Random Forest classifier is used due to its robustness 
and ability to capture complex interactions between features. Ran-
dom Forest is an ensemble learning technique that builds multiple 
decision trees and merges their predictions to enhance accuracy 
and control overfitting. It is particularly well-suited for datasets 
that include both categorical and numerical variables. In this case, 
the model is initialized with 100 decision trees (n_estimators=100) 
and trained on the scaled training data. The performance is then 
evaluated using accuracy and classification metrics. A confusion 
matrix is also plotted to visualize the classification results for both 

cardiovascular and non-cardiovascular cases. The model demon-
strates a noticeable improvement in predictive power compared to 
the logistic regression approach.

The confusion matrix for the Random Forest model illustrates 
the prediction accuracy across both classes patients with and with-
out cardiovascular disease. Out of 61 total test samples:

1. 24 individuals without CVD are correctly predicted (True Neg-
atives)

2. 5 individuals without CVD are incorrectly predicted as having 
CVD (False Positives)

3. 27 individuals with CVD are correctly predicted (True Posi-
tives)

4. 5 individuals with CVD are incorrectly predicted as not having 
CVD (False Negatives)

This leads to a total of 8 misclassifications, which is an improve-
ment compared to logistic regression (which had 11). The model 
achieves an overall accuracy of 84%. The classifier also maintains 
a balanced precision of 84% and f1-score of 84%, indicating robust 
performance in identifying both healthy and at-risk patients Figure 
4.

Figure 4: Confusion Matrix- Random Forest.
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XGBoost

Extreme Gradient Boosting (XGBoost) is an advanced ensem-
ble method that builds decision trees sequentially, where each new 
tree focuses on correcting the errors of the previous ones. It com-
bines boosting with regularization techniques, resulting in a robust 
and efficient model capable of capturing intricate patterns. The fi-
nal model utilized in this study is the XGBoost (Extreme Gradient 
Boosting) classifier, trained on the encoded and normalized cardio-
vascular dataset. Known for its ability to manage complex feature 
interactions and structured data efficiently, XGBoost achieves a high 
classification accuracy of 82%. The F1-scores are similarly balanced 
around 82%, reflecting the model’s consistency and robustness in 
classifying cardiovascular risk. These metrics confirm that XGBoost 

effectively captures subtle patterns in clinical and demographic fea-
tures, outperforming both Logistic Regression and Random Forest 
in this study. Its ability to generalize well while maintaining high 
precision makes it a highly suitable choice for predicting the risk 
of cardiovascular disease. The confusion matrix shown in the fig-
ure provides a visual summary of the XGBoost model’s classifica-
tion performance. It illustrates how well the model distinguishes 
between patients with and without cardiovascular disease. Each 
cell in the matrix represents the number of predictions made by the 
model, with the diagonal cells indicating correct predictions and 
the off-diagonal cells showing misclassifications. This visual tool is 
useful for identifying any bias or imbalance in the model’s predic-
tions and complements the numerical evaluation metrics Figure 5.

Figure 5: Confusion Matrix XGBoost.

Model Performance Comparison

To evaluate which model performs best for Cardiovascular Dis-
ease (CVD) prediction, three machine learning algorithms Support 
Vector Machine (SVM), Random Forest, and XGBoost are compared 

based on key metrics such as accuracy, precision, and F1-score. All 
models are trained and evaluated using the same pre-processed 
dataset to ensure fairness in comparison. The Table 4 above shows 
the differences between all three models.

Table 4: Performance Comparison of Models.

Model Accuracy (%) Precision (%) F1-Score (%) Misclassifications

SVM 70 67% 76% 18

Random Forest 84 84% 84% 10

XGBoost 82 86% 82% 11

The Random Forest model emerges as the top performer, 
achieving the highest accuracy of 84%, and balanced precision of 
84% and F1-scores of 84% across both classes. It demonstrates ro-
bust generalization with the fewest misclassifications, making it the 
most dependable model among the three. XGBoost also performs 
well with an accuracy of 82%, offering strong predictive capability 
with slightly higher variance between class-wise precision scores. 
Support Vector Machine (SVM), while simpler and easier to inter-
pret, trails behind with an accuracy of 70%, and shows more mis-

classifications, indicating its limitations in capturing complex data 
relationships compared to ensemble methods. The bar chart below 
provides a clear visual comparison of the classification accuracy 
achieved by three machine learning models: Support Vector Ma-
chine (SVM), Random Forest, and XGBoost. Each model is trained 
on the same encoded and normalized dataset, ensuring a consistent 
and fair evaluation. The height of each bar represents the overall ac-
curacy percentage on the test dataset. As depicted, Support Vector 
Machine yields the lowest accuracy at 70%, serving as a baseline 
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model. XGBoost improves upon this by reaching 82%, benefiting 
from its ensemble structure that reduces variance. The highest ac-
curacy, 84%, is achieved by Random Forest, which leverages gradi-

ent boosting and sophisticated regularization to generalize better 
on complex clinical data Figure 6.

Figure 6: Model Comparison: Evaluation Matrics.

Accuracy Vs Number of Trees

The graph in Figure 7 illustrates the relationship between the 
number of trees in a Random Forest model and its corresponding ac-
curacy, highlighting how model performance changes with varying 
numbers of trees. Random Forest, an ensemble learning technique, 
builds multiple decision trees and aggregates their predictions to 
enhance accuracy and reduce overfitting. Initially, as the number 
of trees increases from 10 to 50, there is a significant improvement 
in accuracy, indicating the model becomes more robust with more 
trees. However, beyond 50 trees, the accuracy begins to fluctuate 
rather than follow a consistent trend. For instance, accuracy expe-

riences a noticeable drop at 100 trees, followed by an improvement 
at 300 trees, and then declines again at 500 trees. These fluctua-
tions may be attributed to randomness in tree construction or spe-
cific characteristics of the dataset, such as noise or class imbalance. 
The peak accuracy is observed at 50 trees, suggesting that this may 
be the optimal number of trees for this dataset, balancing accura-
cy and computational efficiency. As the number of trees increases 
further, the model exhibits diminishing returns, where additional 
trees do not significantly enhance performance and may even lead 
to a slight decline in accuracy. This emphasizes the importance of 
tuning the number of trees in a Random Forest model to achieve the 
best balance between performance and computational cost.

Figure 7: Accuracy vs Number of Trees in Random Forest
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The graph in Figure 8 demonstrates the relationship between 
the number of trees in an XGBoost model and its accuracy, high-
lighting how performance evolves as the number of trees increas-
es. XGBoost, an efficient gradient boosting algorithm, sequentially 
builds trees, with each one correcting the errors of the previous. 
Initially, at 50 trees, the model experiences a dip in accuracy com-
pared to 10 trees, likely due to early-stage instability. However, as 
the number of trees increases to 100 and beyond, the accuracy im-

proves significantly, showcasing the model’s ability to refine pre-
dictions over iterations. Beyond 200 trees, the accuracy plateaus 
indicate that additional trees do not improve performance further. 
The highest accuracy is achieved at 200 trees, suggesting it as the 
optimal number for this dataset. This behaviour underscores the 
importance of tuning the number of trees in XGBoost to balance 
model performance and computational efficiency.

Figure 8: Accuracy Vs Number of Trees in XGBoost.

The graph in Figure 9 illustrates the relationship between the 
regularization parameter (C) and the accuracy of an SVM (Support 
Vector Machine) model, demonstrating how the model’s perfor-
mance is influenced by different values of C. The regularization 
parameter C controls the trade-off between achieving a low error 
on the training data and maintaining a simpler decision boundary 
to prevent overfitting. At very small values of C (e.g., (10^{-2})), 
the model prioritizes simplicity, which may result in underfitting 
and lower accuracy as it allows for more misclassifications. As C 
increases (e.g., from (10^{-1}) to (10^{1})), the accuracy improves 

significantly, indicating that the model is better fitting the training 
data by reducing the margin violations (i.e., penalizing misclassi-
fied points more heavily). At very high values of C (e.g., (10^{2}) 
and (10^{3})), the accuracy continues to rise, suggesting that the 
model is closely fitting the training data. However, excessively large 
values of C may risk overfitting, where the model becomes too sen-
sitive to the training data and may not generalize well to unseen 
data. This graph highlights the importance of carefully tuning the 
regularization parameter C to achieve an optimal balance between 
bias and variance, ensuring robust performance.

Figure 9: Accuracy Vs Regularization Parameter (C) in SVM.
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Discussion
The predictive performance of all three machine learning mod-

els Support Vector Machine (SVM), Random Forest, and XGBoost 
demonstrates the potential of structured clinical data in identifying 
individuals at risk of Cardiovascular Disease (CVD). Among these, 
Random Forest emerges as the most accurate model, achieving an 
impressive 84% accuracy, slightly outperforming XGBoost (82%) 
and significantly surpassing Support Vector Machine (70%). This 
result aligns with the strengths of Random Forest, which excels in 
capturing nonlinear patterns and feature interactions in structured 
data. The confusion matrix for the Random Forest model reflects its 
strong classification ability, correctly identifying 27 out of 32 CVD 
patients and 24 out of 29 non-CVD individuals, with only 5 total 
misclassifications. This distribution indicates that the model is not 
only accurate but also well-balanced in classifying both positive 
and negative cases, making it suitable for medical decision-making 
scenarios where false negatives can have grave consequences.

Feature Importance Analysis

To understand which variables, contribute most significantly to 
the model’s decisions, the feature importance graph derived from 
the Random Forest model provides valuable insights. Features such 
as thal (thalassemia), cp (Chest Pain type), ca (number of major ves-
sels colored by fluoroscopy), and oldpeak (ST depression induced 
by exercise) stand out as the most influential predictors of CVD risk. 
These variables are also clinically relevant, further validating the 
model’s learning from real-world patterns. These findings suggest 
that the model effectively captures complex interdependencies in 
patient data, providing interpretable results that align with medical 
understanding.

Feature Importance Visualization

To gain insights into how the machine learning model makes 
decisions, feature importance analysis is conducted using the Ran-
dom Forest classifier. This analysis ranks each input variable based 
on how much it contributes to improving the model’s predictions 
across all decision trees. Features with higher importance scores 
are those that the model relies on more heavily to distinguish be-
tween patients with and without cardiovascular disease.

Before diving into complex explainability tools, traditional 
feature importance from tree-based models like Random Forest 
provides an excellent starting point for interpretation. This kind of 
analysis is valuable in medical research, as it helps bridge the gap 
between model accuracy and clinical relevance.

In this study, the most influential features include:

1. thal (thalassemia),

2. cp (chest pain type),

3. ca (number of vessels colored by fluoroscopy),

4. thalach(maximum heart rate),

These variables align with clinical expectations and are often 
used in diagnostic contexts, reaffirming the model’s validity in re-
al-world applications. The visualization in Figure 10 shows that 
thal (thalassemia), cp (Chest Pain type), thalach (maximum heart 
rate) and ca (number of vessels colored by fluoroscopy) are the 
most impactful predictors. Understanding this allows medical pro-
fessionals to better trust and interpret the model’s suggestions, 
improving transparency and confidence in deployment scenarios.

Figure 10: Feature Importance Visualization.

A binary classifier’s performance is graphically represented by 
the Receiver Operating Characteristic (ROC) curve. With different 
categorization criteria, it shows the True Positive Rate (TPR) vs. the 
False Positive Rate (FPR). The Area Under the ROC Curve (AUC) is 
a scalar metric that measures both the classifier’s sensitivity and 

specificity while also reflecting the classifier’s overall performance. 
As depicted in Figure 11, both XGBoost and random forest models 
exhibit a high AUC of above 0.9 whereas the Support Vector Ma-
chine (SVM) exhibit only 0.84. The Random Forest (RF) models 
have a highest AUC of 0.92.
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Figure 11: ROC-area under curve of Support Vector Machine, Random Forest, XGBoost.

Conclusion
This research explores the application of supervised machine 

learning techniques for the early prediction of cardiovascular dis-
ease using structured clinical and demographic data. Through rig-
orous data preprocessing steps including imputation of missing 
values, outlier removal via the Z-score method, normalization, and 
encoding of categorical variables the dataset is refined to ensure 
consistency, accuracy, and reliability for model training. Three ma-
chine learning models are implemented: Support Vector Machine 
(SVM), Random Forest, and XGBoost. Each model is evaluated based 
on performance metrics such as accuracy, precision, and F1-score. 
Support Vector Machine (SVM) served as a baseline and achieved 
an accuracy of 70%, while XGBoost slightly outperformed it with 
82%. The Random Forest model emerged as the best-performing 
classifier, attaining an accuracy of 84% and demonstrating strong 
predictive reliability for both CVD and non-CVD cases. 

Feature importance analysis revealed that variables like thal-
assemia, chest pain type, ST depression, and number of major ves-
sels significantly influence prediction outcomes. To demonstrate 
real-world application, the final model is tested on a simulated new 
patient profile. The model successfully predicted the health status, 
emphasizing its practical utility for clinical decision support sys-
tems. The workflow developed in this study offers a reproducible 
and scalable pipeline that can be integrated into early screening 
frameworks, potentially supporting physicians in identifying high-
risk individuals before the onset of severe complications. In sum-
mary, this research underscores the effectiveness of machine learn-
ing models particularly ensemble methods like Random Forest for 
healthcare analytics. These models provide actionable insights that 
can assist in the development of intelligent, data-driven tools for 
preventive cardiology, paving the way for more personalized and 
timely patient care.
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