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Abstract

Artificial Intelligence (AI) is revolutionizing the pharmaceutical industry by accelerating drug discovery, enhancing the efficiency of 
clinical trials, and enabling the development of personalized medicine. It is also being used in pharmaceutical regulatory affairs to 
automate the regulatory filling and document management. This review highlights the current applications of AI in drug develop-
ment and pharmaceutical regulatory affairs, explores key case studies and technological advancements, and discusses the challeng-
es and regulatory considerations associated with these applications. As the AI drug discovery market is growing significantly [1], 
understanding its integration within pharmaceutical pipelines is critical for stakeholders across industry and academia.
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Introduction
Pharmaceutical industry plays a critical role to address health-

care challenges and respond to medical emergencies which is 
mainly based on continuous innovation and application of new 
technologies. The core steps of pharmaceuticals innovation include 
extensive research and development, manufacturing process devel 

 
opment and optimization, packaging considerations, and patient 
oriented marketing strategies [2].

The traditional drug development process is time-consuming, 
costly, and fraught with high failure rates. The challenges are even 
more extensive during the development of novel therapeutics and 
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complex manufacturing process. Every stage of the pharmaceutical 
product life cycle, including drug discovery, optimization, formula-
tion development, characterization, quality testing, marketing, and 
post-marketing surveillance, can integrate AI to improve its safety, 
quality and efficacy [3]. AI offers promising solutions by expediting 
various phases of drug development, from target identification to 
clinical trials. In 2025, the market for AI in drug discovery is valued 
at approximately $1.94 billion and is expected to reach $16.49 bil-
lion by 2034. This growth underscores AI’s transformative poten-
tial in modernizing pharmaceutical R&D.

AI can be implemented to simplify the regulatory affairs activi-
ties like- dossier compilation, documents archiving and review, data 
extraction, compliance auditing and quality management system. 

This human AI- Human interaction opens new era in pharmaceu-
tical regulatory affairs [4]. The European Medicines Agency (EMA) 
and Food and Drug Administration (FDA) have plans to implement 
AI and are currently consulting stakeholders for their comments.

Materials and Methods
This review was conducted through an extensive literature 

analysis of peer-reviewed journals, company reports, regulatory 
documents, and market studies published between 2017 and 2025. 
Key search terms included “AI in drug discovery,” “machine learn-
ing in pharma,” “generative AI for molecules,” and “regulatory AI in 
medicine.” Data from PubMed, Scopus, and Google Scholar formed 
the basis of this synthesis.

Results and Discussion
AI in the Life Cycle Management of Pharmaceuticals

Figure 1: AI in various pharmaceutical business subclass, including pharmaceutical product management and drug development 
[5].
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Table 1

Name of tools/techniques Application

DeepChem Open-source library for deep learning in chemistry and drug discovery

Reinforcement learning Used to optimize drug combinations and dosages by considering multiple interacting variables and maximizing de-
sired outcomes

Neural graph fingerprints Method for encoding molecular structures as fixed-length feature vectors using neural networks, suitable for various 
applications in drug discovery, such as virtual screening, lead optimization, and property prediction

DeepTox Open-source deep learning framework specifically designed for toxicity prediction and assessment

Predictive ADME/Tox mod-
elling

Tools employ ML techniques to model and predict the absorption, distribution, metabolism, excretion, and potential 
toxicity of drug candidates

Natural language processing 
(NLP) tools Assist in extracting and analysing information from scientific literature, patents, and clinical trial data

Cheminformatics tools Tools enable the analysis and manipulation of chemical structures and properties

QSAR/QSPR modelling Correlate molecular properties and structures with biological activities or properties, enabling the prediction of com-
pound behaviour

Deep learning (DL) Applied in tasks like virtual screening, de novo drug design, and predicting drug properties

Machine learning (ML) Help predict drug-target interactions, analyse biological activity, and optimize lead compounds

AI can support different stages of drug research and develop-
ment and throughout the life cycle of the pharmaceuticals. AI can 
actually be implemented from the lab to the bed. Main steps are 
Drug discovery, Clinical trial design & monitoring, Pharmaceuticals 
product development, Manufacturing, Quality control & assurance, 
Product management and post market surveillance. A number of AI 
tools/technique which are widely use now in the pharmaceuticals 
industry is tabulated below [5] (Table 1) (Figure 1).

AI’s Role in Modern Drug Formulation

The pharmaceutical industry is increasingly turning to artificial 
intelligence (AI) to solve complex problems in drug formulation. 
Traditional dosage forms are being enhanced—or replaced—by 
more advanced systems like nanoemulsions, capsules, and solid 
dispersions, thanks in large part to machine learning and neural 
network models. These technologies help scientists overcome typi-
cal formulation barriers such as poor solubility, inadequate stabili-
ty, and inconsistent bioavailability [6].

Controlled Release Dosage form

To develop tablets that release drugs gradually over time, re-
searchers use AI-based tools to simulate how medications behave 
in the body. Artificial Neural Networks (ANNs), in particular, have 
proven effective in

fine-tuning how quickly a drug dissolves and is absorbed, help-
ing to align lab-based release profiles with real- life performance 
[7].

Fast-Acting Tablets

When immediate effects are needed, AI again plays a key role. 
Rather than relying solely on trial and error, formulators use neu-
ral networks and optimization algorithms to evaluate the right mix 

of ingredients and manufacturing processes [8]. These approaches 
provide more reliable results than traditional statistical models.

Capsule Formulation

Hard gelatin capsules—often used for drugs with poor water 
solubility—also benefit from AI. These systems mimic human rea-
soning to predict how different ingredients will interact. Though 
early versions struggled with accuracy, refinements in machine 
learning have led to much better predictive models, especially 
when working with data from similar drug types [9].

Solid Dispersions

AI is widely used in improving formulations where the active 
drug is embedded in a solid base. These systems are known for en-
hancing solubility and stability. Using techniques like random forest 
models, scientists can now identify which factors—such as polymer 
choice or humidity levels—most influence final product quality.

Emulsions and Nanoemulsions

These complex mixtures of oil and water are stabilized with 
emulsifiers and require careful formulation. AI tools assist in ad-
justing ingredients to achieve the right balance of particle size, tex-
ture, and shelf-life [10]. In some cases, neural networks can even 
predict product performance based on thermal and structural data.

Self-Emulsifying Systems (SEDDS)

SEDDS are designed to help drugs dissolve in the body more 
effectively. AI is used here to model how the formulation behaves 
during digestion, ensuring optimal absorption. Researchers ap-
ply advanced algorithms to determine the right blend of oils, sur-
factants, and drugs, tailoring each formulation to meet specific bi-
oavailability needs.
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Other Applications

Beyond these examples, AI continues to be integrated into the 
creation of microparticles [11-15], nanoparticles [16-29], lipos-
omes [30], microspheres [31-33], and various solid and liquid drug 
forms. Its ability to process complex data quickly makes it an inval-
uable tool for modern pharmaceutical development.

AI’s Role in Pharmaceutical Regulatory Affairs

Traditional Approach

The manual process of regulatory affairs involves:

i.	 Data collection and dossier preparation, which is 
time-consuming, prone to manual errors, and results in a heavy 
workload.

ii.	 Document review and dossier submission are also la-
bor-intensive and inefficient.

AI-Driven Regulatory Affairs

With AI implementation, the process is transformed, offering 
[34]:

a)	 Easy documentation and submissions

b)	 Real-time monitoring and seamless data exchange

c)	 Enhanced regulatory intelligence

d)	 Improved decision-making and compliance

e)	 Optimization of workflows

f)	 Risk assessment and predictive modeling

g)	 Faster approval with a higher success rate

Overall, AI streamlines and enhances the efficiency, accuracy, 
and speed of regulatory processes in pharmaceutical and health-
care sectors.

Conclusion
AI is driving a paradigm shift in drug development, offering 

solutions to overcome long-standing pharmaceutical R&D challeng-
es. Addressing integration barriers, regulatory clarity, and ethical 
use will ensure its sustained impact. The use of AI in pharmaceu-
tical formulations is predictable and will continue to be transform-
ative. AI aids researchers in identifying new drug targets, drug 
interactions, and patient populations that can most benefit from 
treatment. With increasingly advanced AI systems, researchers 
can accurately simulate biological systems and develop more per-
sonalized treatments, leading to more efficient and targeted drug 
development. In the fast-paced and rapidly changing environment 
of pharmaceutical regulatory affairs, the ability to apply AI to the 
many tasks involved is a major step up. That includes not only more 
time-efficient regulatory dossier creation, but also better processes 
for risk analysis and other key regulatory aspects.
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