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Abstract

Mucopolysaccharidoses (MPS) are classified as a group of lysosomal storage diseases. They are based on inherited disorders of the enzymatic 
breakdown of acidic mucopolysaccharides (glycosaminoglycans) by lysosomal hydrolases. The undegraded glycosaminoglycans are stored in the 
lysosomes. This eventually leads to disturbances in cellular metabolism and, in severe cases, cell death. Tissues of the skeletal system, central ner-
vous system, visceral organs, skin, and endocardium are mainly affected. Four types of glycosaminoglycans are stored. Depending on the different 
distribution patterns and clinical criteria, different main forms of mucopolysaccharidoses can be distinguished, which are further divided into vari-
ous subtypes. These subtypes either refer to different clinical manifestations of the same enzyme defect or different biochemical defects of a clinical 
manifestation. Almost all types have severe and mild attenuated forms. Classification is only possible through the clinical course and the speed at 
which the disease progresses. MPS II and MPS IIIa are the basis of this review focusing on curing aspects of these rare diseases in childhood. 
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Introduction
MPS II is a rare, inherited lysosomal storage disorder that affects 

boys and is caused by a deficiency of the enzyme iduronate-2-sul-
fatase [1-16]. This enzyme deficiency leads to the accumulation of 
certain sugars in various organs, resulting in progressive damage 
[17-21]. MPS IIIa is an inherited metabolic disorder caused by an 
enzyme deficiency, leading to the accumulation of certain sugar 
molecules in the body and damaging the brain and other organs 
[22-36]. There is currently no cure, and treatment focuses on symp-
tom management, ultimately leading to premature death. Both rare 
genetic diseases include treatment options, but curing means one-
time gene therapy approaches to correct the genetic defect, which 
induces the enzyme defect in both diseases with severe phenotypic 
outcome [36-46]. 

Hunter Syndrome (MPS II)

Hunter syndrome, also known as mucopolysaccharidosis type 
II, is an X-linked recessive metabolic disorder [1-21,37-39,47-53]. 
It belongs to the mucopolysaccharidoses, a group of disorders in  

 
which the lysosomal breakdown of mucopolysaccharides is im-
paired. Due to its X-linked inheritance, the disease almost exclu-
sively affects boys [1-21,37-39,47-53]. There is one case of Hunt-
er syndrome per approximately 156,000 births. In Germany, this 
translates to about 4-5 new cases per year. The cause of Hunter 
syndrome is a defective gene on the X chromosome (Xq27.3-q28) 
that encodes for iduronate-2-sulfatase. The mutation disrupts the 
breakdown of dermatan and heparan sulfate [1-4]. The presenta-
tion ranges from severe forms with intellectual disability (formerly 
Type A) to very mild forms with minimal or no intellectual devel-
opmental delay (formerly Type B) [2,3]. The transitions between 
these forms are fluid. Specific to MPS type II are skin manifestations 
with pale, nodular, usually grouped thickenings (“peau d’orange”). 
Other symptoms include facial changes with thick eyebrows, flat, 
sunken nasal bridge, fleshy, broad lips, enlarged tongue and prog-
nathism. Deep and hoarse voice and cardiac involvement up to 
heart failure is also found. Further symptoms are middle ear and 
inner ear hearing loss, optic atrophy, early-onset progressive joint 
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contractures and distended abdomen due to developing hepato-
splenomegaly. Umbilical hernia and growth delay are also common 
features. Severely affected patients may develop tetra spasticity 
with swallowing and breathing difficulties after a phase of aggres-
sion and erethism, gross motor skill disturbances with gait instabil-
ity and frequent falls.

Skeletal changes like dysostosis multiplex congenita are in some 
cases present. The diagnosis is made by the increased excretion of 
mucopolysaccharides, especially dermatan and heparan sulfate in 
the urine electrophoresis. Additionally, the defective enzyme is de-
termined in leukocytes or fibroblasts. Molecular genetic analysis is 
possible, as well as prenatal diagnosis in amniotic cells or chorion-
ic villi cells. There is no causal treatment available. The possibility 
of a stem cell transplant is possible in individual cases. Idursulfase 
(Elaprase) was the first enzyme replacement therapy approved 
in Europe in January 2007 [47,48]. Hunter syndrome is a genetic 
disease caused by a mutated gene. This gene carries the blueprint 
for the formation of an enzyme called iduronate-2-sulfatase (I2S 
or IDS). In the case of the disease, the IDS gene is altered, leading 
to the enzyme IDS not being produced correctly or at all, resulting 
in improper functioning. Over 300 different gene mutations have 
been identified that can be involved in the development of Hunter 
syndrome. The enzyme IDS is needed to break down Glycosamino-
glycans (GAGs), a type of carbohydrate, in the body’s catabolism 
process, which takes place in the lysosomes of cells. Lysosomes are 
cell organelles responsible for digesting various substances in the 
cells (20). IDS breaks down GAGs by removing a specific chemical 
group (sulfate) from the different forms of GAGs (dermatan sulfate 
and heparan sulfate) (20). In Hunter syndrome, this process is im-
paired or reduced due to the lack or deficiency of IDS, leading to 
the accumulation of GAGs in the body over time and causing the 
various symptoms of the disease. The IDS gene is located on the X 
chromosome, which is why Hunter syndrome is referred to as an 
X-linked recessive disorder. Recessive means that in a woman with 
two X chromosomes, Hunter syndrome will only manifest if both X 
chromosomes carry the defective gene. If only one of her X chromo-
somes is affected, she will not develop Hunter syndrome but will be 
a carrier and can pass on the faulty gene to her offspring. In men, 
who have only one X chromosome, inheriting an X chromosome 
with a defective IDS gene will result in the enzyme defect of Hunter 
syndrome. Men always inherit their second sex chromosome from 
their fathers, which is the Y chromosome. The likelihood of inher-
iting the defective gene depends on several factors. For example, 
if a mother is a carrier of the gene defect but is not affected by the 
disease herself, the probability of passing on the gene is 50%. Her 
offspring will receive 50% of her healthy X chromosome and 50% 
of her X chromosome with the defective gene, assuming the father 
is not affected by Hunter syndrome. 

MPS2 patients appear healthy at birth, with the first symptoms 
appearing between 18 months and 4 years of age. Macrocephaly 
develops in infancy, and children initially grow normally or at an 
above-average rate. Early symptoms include frequent respiratory 
infections (especially otitis media), umbilical and inguinal hernias, 
persistent diarrhea, hepatosplenomegaly, and skin changes resem-

bling an orange peel (on the shoulders, back, and thighs). A dis-
tinctive facial appearance with thickened lips and nostrils, and an 
enlarged and protruding tongue slowly develops and may become 
visible between the ages of 2 and 4 years, in milder cases even lat-
er. The course varies from a severe form (MPS2, severe form) with 
early psychomotor regression to a milder form (MPS2, attenuated 
form) that occurs without cognitive impairment. MPS2 is caused by 
a deficiency of iduronate-2-sulfatase (I2S), leading to lysosomal ac-
cumulation of two specific mucopolysaccharides, Dermatan Sulfate 
(DS) and Heparan Sulfate (HS). The causative gene (IDS) has been 
mapped to the Xq28 chromosomal region. Approximately 320 dif-
ferent mutations have been described so far.

The diagnosis is based on clinical signs and elevated DS and 
HS levels in urine, and is confirmed by demonstrating the enzyme 
deficiency in serum, leukocytes, or fibroblasts, or in dried blood 
smears. To exclude multiple sulfatase deficiency, the activity of 
another sulfatase must also be determined. Genetic tests involve 
searching for exon or complete gene deletions, point mutations in 
the IDS gene and its promoter region, and recombination’s with the 
adjacent IDS2 pseudogene. Differential diagnoses include mucopo-
lysaccharidosis type 1,6,7, sialidosis type 2, mucolipidosis type 2 
and 3, and multiple sulfatase deficiency. Prenatal diagnosis through 
measurement of IDS activity or mutation analysis in chorionic villi 
or amniocytes is only performed in male fetuses. It is an X-linked 
recessive disorder. However, not only hemizygous boys are affected, 
12 affected girls have been described. Most of them were hetero-
zygotes with skewed X-inactivation and preferential expression of 
the mutated allele. All patients should consider weekly intravenous 
Enzyme Replacement Therapy (ERT), which has been shown to al-
leviate somatic symptoms. A cranial shunt should be performed to 
address cases of hydrocephalus. Hernia repair, tonsillectomy and 
adenoidectomy (to clear the upper airways), and in some cases 
positive pressure ventilation or tracheostomy may be necessary. 
Over time, heart valve or hip joint replacement and carpal tunnel 
release may be required. Patients need regular echocardiographic 
examinations, respiratory function must be assessed, a complete 
radiological examination to identify dysostosis multiplex, cranial 
and cervical MRI with or without lumbar puncture to assess cere-
brospinal fluid pressure, hearing tests, eye examinations, and nerve 
conduction velocity tests are necessary. The prognosis varies great-
ly. In the severe form (60-80% of cases), life expectancy is greatly 
shortened, and death usually occurs before the age of 25, often due 
to cardiorespiratory complications. In the attenuated form, patients 
can survive into adulthood, sometimes even beyond 60 years, and 
intellectual deficits are usually not present in these cases.

San Filippo Syndrome (MPS IIIa)

On the other hand, Sanfilippo syndrome is a rare inherited 
metabolic disorder [22-24,54,55]. The syndrome was subsequent-
ly named after the lead author. It belongs to the group of mucopo-
lysaccharidoses, a group of disorders involving the breakdown of 
long-chain sugar molecules called glycosaminoglycans [25-36,40-
46,56-79]. Sanfilippo syndrome is referred to as Type III of the 
mucopolysaccharidoses, which is further divided into four sub-
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types (A-D). Affected children are typically normal at birth, but 
their intellectual development is delayed between the ages of two 
to four years. Skills that have been learned may regress. The chil-
dren exhibit extremely restless behavior. By the second decade of 
life, behavioral disturbances take a backseat and are replaced by 
increasing spastic paralysis. Unlike other mucopolysaccharidoses, 
this syndrome primarily affects the brain, with other organs be-
ing less affected. Patients are usually of normal stature and have 
minimal skeletal abnormalities. Treatments were previously only 
symptomatic, as there was no causal therapy available. With ge-
netic methods, successful treatments have been achieved in early 
childhood. Sanfilippo syndrome is caused by an autosomal reces-
sive defect in four different enzymes (Types A-D) that are respon-
sible for breaking down the glycosaminoglycan heparan sulfate. 
At birth, children with Sanfilippo syndrome appear normal. Due 
to the rarity of the disease, there are limited studies on the pro-
gression of symptoms. In severe cases, children may begin to lag 
behind in their development between the ages of two to four years. 
They exhibit noticeably restless, hyperactive, and possibly aggres-
sive, destructive behavior. During this phase, affected individuals 
experience pronounced sleep disturbances. They speak less and 
gradually lose their ability to understand speech. Later, increas-
ing signs of paralysis develop. Eventually, affected individuals lose 
their ability to walk due to spastic paralysis. Swallowing difficulties 
arise, leading to feeding challenges. Epilepsy may also occur as a 
result of progressive brain dysfunction. A study from 2010 conclud-
ed that nearly 80% of affected individuals have a milder course of 
the disease, with only slight decline in intellectual abilities. These 
children can generally reach adulthood with minimal restrictions. 
In comparison to neurological symptoms, manifestations in other 
organs are less pronounced in Sanfilippo syndrome compared to 
other mucopolysaccharidoses: body length reaches almost normal 
proportions, facial features become coarser only with significant 
brain function deterioration. The hair is notably thick and brittle, 
and eyebrows may grow together in the middle. The course of the 
disease is highly variable, with the majority of affected individuals 
dying in the second or third decade of life, depending on the sever-
ity. When Sanfilippo syndrome is suspected, a urine test to deter-
mine glycosaminoglycans levels can be conducted. However, GAG 
excretion may only be marginally or mildly elevated in Sanfilippo 
syndrome. For a more definitive diagnosis, electrophoresis can be 
used to detect increased excretion of heparan sulfate. If suspicion 
persists, enzyme activity levels in white blood cells or fibroblasts 
can be measured to confirm the diagnosis. Since Sanfilippo syn-
drome is an inherited disorder, a causal treatment was not avail-
able for a long time. An approved enzyme replacement therapy, like 
those available for other types of mucopolysaccharidoses, does not 
exist for Type III. Symptoms such as hyperactivity and sleep distur-
bances can be treated with medication. However, each child may 
respond differently to various medications, and their effectiveness 
may diminish over time, requiring individualized treatment for 
each patient. Protective measures may be necessary in the home 
environment for children with pronounced hyperactive and aggres-
sive behavior to prevent self-injury. Swallowing difficulties may re-
quire a transition to a pureed diet or even feeding through a gastric 

tube. Increasing joint stiffness may occur with the loss of mobility, 
which can be prevented with physical therapy. In some mucopoly-
saccharidoses, foreign bone marrow transplantation can mitigate 
the course of the disease, especially if done before skeletal changes 
occur. This approach is generally not recommended for Sanfilippo 
syndrome, but there are reports of reduced disabilities after bone 
marrow transplantation in some cases. 

Discussion
In patients with MPS II, an enzyme called iduronate-2-sulfatase 

may not be produced in sufficient amounts or at all due to a genetic 
mutation [1-6]. Long-term, MPS II or Hunter syndrome can present 
with varying degrees of severity, with transitions between milder 
and more severe forms [5]. Typically, the respiratory system, skele-
ton and joints, as well as the heart, are affected, and in severe cases, 
the central nervous system may also be involved. This more severe 
form is referred to as the neuropathic form, while if the nervous sys-
tem is not affected, it is called a non-neuropathic form. Ultimately, 
only long-term observation of the patient allows for an assessment 
of the severity. Each patient has their own individual form of the 
disease in terms of severity, progression, and organ involvement. 
The disease symptoms and complications mentioned below do not 
apply equally to all patients and can be mitigated through the use of 
therapies. Sanfilippo syndrome is a rare metabolic disorder caused 
by the deficiency of a specific enzyme. This enzyme is responsible 
for breaking down sugar molecules, which accumulate and dam-
age nerve cells in its absence. Gene therapies are being clinically 
tested in humans in both diseases. Enzyme replacement therapies 
and stem-cell gene therapies were introduced especially in MPS II 
[47,48,50-52]. 

Stem cells are taken from the bone marrow of a child with the 
disease and genetically corrected in the laboratory using a gene 
vector. Somatic gene corrections with the CRISPR/Cas method are 
expected to be more precise and effective. Researchers are work-
ing on using modified adenoviruses or other viruses as carriers for 
the corrected gene. A promising method is intracerebral admin-
istration of gene therapy in both diseases, where the vector con-
taining the genetic information is injected directly into the brain 
tissue [36,37,42-44,46,58]. This method is similar to the treatment 
successfully used for other neurological disorders. Initial studies 
show that early gene therapy can enable largely normal cognitive 
development, but the therapy should start before the second year 
of life. Many gene therapies for Sanfilippo syndrome (MPS IIIa) are 
still in the clinical trial phase and are not approved for widespread 
use. Currently, the treatment of Sanfilippo syndrome is limited to 
symptom management and palliative measures. Enzyme replace-
ment therapies will be updated by more effectiveness in brain tis-
sues in both diseases, but this means long-term treatment but no 
curing of the disease. In both diseases, MPS II and III, the future of 
research will be the one-time gene therapy approach to correct the 
genetic defect, which induces the enzymatic defects in both diseas-
es. Recent research efforts are promising to achieve this goal in the 
next few years.
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