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Abstract

Methylation Risk Scores (MRS) that incorporate DNA methylation-derived Epigenetic Biomarkers (EBPs) offer a promising route to improved 
diagnosis, risk prediction and personalised disease management. This systematic review synthesises evidence from 12 clinical studies (January 
2020-May 2024) identified via PubMed, ScienceDirect, bioRxiv and medRxiv using PRISMA-compliant screening, with studies selected on the basis 
of primary human data assessing MRS/EBP performance across a range of non-cancer conditions. Data extraction captured study design, sample 
size, analytic approach and key performance metrics (hazard ratios, odds ratios, C-Index, AUC, ICC, sensitivity, specificity, Pearson r²). A narrative 
synthesis was performed owing to heterogeneity in cohorts, outcomes and analytic pipelines.

Across studies, MRS demonstrated consistent and moderate-to-strong predictive power: hazard ratios ranged from 1.4-2.3 and odds ratios from 
1.7-2.2; C-Index values were 0.70-0.80 and AUC values reached as high as 0.89 (type 2 diabetes complications), with typical sensitivity 78-88% and 
specificity 82-89%. Reliability metrics were favourable (ICC 0.77-0.85; r² 0.65-0.74). Disease contexts included metabolic syndrome, cardiovascular 
events, type 2 diabetes, kidney disease, frailty, cognitive outcomes and osteoarthritis; several studies reported overlapping CpG loci and biologically 
plausible gene associations (e.g. CPT1A, ABCG1), supporting mechanistic relevance [35,12,86].

Methodologically, studies employed EWAS, penalised regression (notably elastic net), machine-learning classifiers and Multi-Omics Integration 
(OMICmAge), reflecting rapid methodological innovation [16,66]. Principal barriers to clinical translation include lack of standardised DNAm mea-
surement and analysis protocols, limited cohort diversity, high initial costs and regulatory uncertainty [85,87]. Emerging opportunities lie in AI/
ML enhancement, multi-omics and single-cell epigenomics, and targeted epigenetic therapeutics. In summary, current evidence indicates that MRS 
incorporating EBPs can meaningfully improve disease prediction and prognostication across multiple conditions, but widespread clinical adoption 
will require standardisation, broader validation in diverse populations and resolution of economic and regulatory challenges.

Scientific-Theoretical Agenda
This section sets out the theoretical foundations, methodological 

principles and an applied research agenda for Methylation Risk 
Scores (MRS) that incorporate DNA methylation-derived Epigenetic 
Biomarkers (EBPs). It synthesises mechanistic knowledge of 
epigenetics with current practice in MRS development, identifies 
methodological and translational bottlenecks, and proposes 
priority directions for research that would enable robust clinical 
deployment.

 
Epigenetic Foundations and Mechanistic Rationale

Epigenetics denotes heritable changes in gene expression 
that occur without alteration of the DNA sequence [47,7]. DNA 
Methylation (DNAm) the covalent addition of a methyl group to 
cytosine residues within CpG dinucleotides has been the most 
intensively characterised mechanism because of its relative stability 
in peripheral tissues and its functional impact on transcriptional 
regulation Schmits, et al., (2019) [36]. Methylation of promoter-
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proximal CpG islands commonly reduces transcription factor 
binding and represses gene expression, while demethylation may 
permit transcriptional activation Shuai, et al., (2020) [91]. CpG 
sites are non-uniformly distributed across the genome and cluster 
in islands frequently associated with gene promoters; methylation 
status at these loci therefore has outsized regulatory importance 
[23,97,40].

From a pathophysiological perspective, DNAm integrates 
genetic predisposition and environmental exposures (diet, smoking, 
psychosocial stress, pollutants), providing a molecular record of 
cumulative and recent exposures that can influence disease onset 
and progression [67,64]. This dual sensitivity to genotype and 
environment is the central theoretical justification for MRS: where 
Polygenic Risk Scores (PRS) represent inherited genetic liability, 
MRS can capture dynamic, exposure-responsive elements of risk 
and thus potentially improve prediction for complex diseases 
whose aetiology is strongly modulated by environment and lifestyle 
Wattacherill, et al., (2023) [65,43].

Constructing Methylation Risk Scores: Data, 
Pipelines and Algorithms

Data Generation and Preprocessing

MRS construction typically begins with genome-wide DNAm 
data generated on microarray platforms (e.g. Illumina 450K or EPIC 
arrays) or by sequencing approaches [13,77]. Raw data require 
rigorous preprocessing probe-level quality control, normalisation, 
batch-effect correction and, where necessary, deconvolution to 
account for cellular composition to reduce technical artefact and 
improve comparability across cohorts [63,25]. Standardised 
pipelines for these steps remain incomplete across the field, 
producing one of the principal barriers to reproducibility [85].

Feature Selection and Model Training

Feature selection for MRS draws on several complementary 
strategies. Epigenome-Wide Association Studies (EWAS) identify 
CpG sites statistically associated with outcomes of interest, while 
candidate-gene and functional genomic approaches prioritise sites 
with demonstrated regulatory impact [83,62]. Machine-learning 
methods (elastic net, random forest, penalised Cox models) are 
then used for variable selection and model building; elastic net has 
been particularly prominent because it manages multicollinearity 
and high-dimensional predictor spaces common to methylation 
data [30,14]. Cross-validation and independent cohort validation 
remain essential to avoid overfitting and to estimate generalisable 
performance [25,90].

Performance Metrics and Evaluation

Robust evaluation of MRS uses multiple complementary 
metrics: discrimination (AUC, C-Index), calibration, effect size 
(hazard ratios, odds ratios), and reliability (intra-class correlation, 

Pearson r²). Sensitivity and specificity characterise classification 
performance where thresholds are applied [1-10,11-29]. Reporting 
across these metrics, alongside transparent methods for feature 
selection and weighting, is crucial for cross-study comparison and 
clinical interpretation.

Biological Plausibility and Cross-Disease Sig-
nal

A compelling theoretical prerequisite for MRS is biological 
plausibility: the CpG sites that contribute substantially to a score 
should map to genes and pathways mechanistically connected 
to the phenotype. Across the reviewed literature, recurring loci 
(for example, CPT1A and ABCG1) and loci associated with lipid 
metabolism, inflammation and cellular ageing support mechanistic 
interpretation for metabolic and cardiovascular endpoints [30-
35,12]. The identification of overlapping CpGs across different 
disease endpoints suggests that certain epigenetic signatures 
reflect shared pathophysiological axes (inflammation, metabolic 
dysfunction, biological ageing) and may underpin pleiotropic 
predictive utility across conditions such as metabolic syndrome, 
cardiovascular disease and frailty Marioni, et al., (2015); Li, et al., 
(2022).

Epigenetic Clocks, Ebps and Conceptual No-
menclature

Epigenetic clocks (Horvath’s clock, Hannum, PhenoAge and 
more recent integrative measures such as OMICmAge) provide 
quantitative indices of biological age derived from DNAm patterns 
and have proven predictive of mortality and age-related morbidity 
[36-53,8,17]. These clocks form a subset of EBPs and illustrate how 
methylation patterns can summarise latent biological processes. 
However, the field suffers from inconsistent terminology (EBP, 
EpiSigns, EpiScores), hindering comparability and translation. A 
theoretical agenda must therefore prioritise consensus definitions 
and taxonomies to ensure clarity in how different classes of 
methylation-derived markers are described and validated [54-92].

Methodological Limitations and Sources of 
Bias

Cohort Heterogeneity and Population Generalisability

A recurrent methodological concern is cohort composition. 
Many studies to date are drawn from relatively homogeneous 
populations which reduces power to detect population-specific 
effects and limits external validity [92]. Meta-analytic integration is 
hampered by heterogeneity of cohorts, phenotype definitions and 
assay platforms.

Technical Variability

Differences in array platforms, laboratory procedures, and 
preprocessing choices introduce batch effects and technical noise 



Am J Biomed Sci & Res

American Journal of Biomedical Science & Research

Copyright© Helen Taylor MSc

53

that can masquerade as biological signal [21]. Lack of standardised 
pipelines for preprocessing and normalisation therefore threatens 
reproducibility [85].

Cellular Heterogeneity and Sample Type

Peripheral blood is commonly used for convenience but 
comprises mixed cell types whose proportions vary with age, health 
status and acute exposures. Without adequate deconvolution, 
observed DNAm differences may reflect shifts in cell composition 
rather than locus-specific regulation [63].

Confounding, Causality and Temporality

DNAm is both a potential mediator and a consequence of 
disease and exposure. Distinguishing causal methylation changes 
from epiphenomena requires longitudinal designs, repeated 
measures and methods such as Mendelian randomisation 
leveraging Methylation Quantitative Trait Loci (mQTLs). Cross-
sectional associations alone cannot establish causality [38].

Integration With Other Data Modalities and 
Advanced Technologies

Multi-Omics and Single-Cell Epigenomics

Combining DNAm with transcriptomics, proteomics and 
metabolomics (multi-omics) promises richer, mechanistically 
informed risk models and is exemplified by integrative efforts 
such as OMICmAge [18]. Single-cell bisulfite sequencing and other 
single-cell epigenomic methods resolve cellular heterogeneity and 
can pinpoint cell-type-specific methylation changes relevant to 
disease [37,26]. The theoretical value is clear: models built with 
multi-layered molecular data should better capture disease biology 
and may improve both sensitivity and specificity.

Artificial Intelligence, Explainability and Model 
Robustness

AI and machine learning including deep learning can extract 
complex, non-linear patterns from high-dimensional methylation 
data [66,45]. Yet clinical translation demands interpretable 
models that clinicians can interrogate. The agenda must therefore 
stress development of explainable AI approaches, techniques for 
model calibration, external validation and assessment of clinical 
net benefit (decision-curve analysis) rather than sole reliance on 
statistical discrimination metrics.

Clinical Translation: Regulatory, Economic and 
Workflow Considerations

The utility of MRS will be determined by clinical validity and 
clinical utility. Beyond accuracy, MRS must demonstrate that their 
use changes clinical decisions in ways that improve outcomes and 
are cost-effective. Regulatory approval will require standardised 

assays, reproducible pipelines, prospective validation and clinical 
trials demonstrating impact on care pathways [87,84].

Health-system integration implies interoperability with 
electronic health records, decision-support tools that synthesise 
MRS with other risk factors, and training for clinicians to interpret 
and communicate epigenetic risk [87,55]. Economic assessments 
should consider both the upfront costs of assay implementation 
and potential downstream savings from earlier diagnosis, reduced 
invasive testing and better-targeted therapies (Impact Statement).

Ethical, Social and Equity Imperatives
Epigenetic markers are sensitive to social and environmental 

determinants of health. If development datasets under-represent 
marginalised groups, MRS risk perpetuating or exacerbating 
health disparities [92]. The agenda must prioritise inclusive cohort 
recruitment, transparent reporting of sociodemographic covariates, 
and embedding equity considerations in model development and 
deployment. Consent procedures must also reflect the potential for 
epigenetic data to reveal sensitive life-course exposures.

Priority Research Agenda and Recommended 
Study Designs

To progress from promising research instruments to clinically 
useful tools, the following research priorities are proposed:

Standardisation Initiatives

Develop community consensus on preprocessing pipelines, 
normalisation strategies, reporting standards and nomenclature 
for EBPs and MRS [85,38].

Large, Diverse, Longitudinal Cohorts

Invest in multi-centre longitudinal studies with repeated DNAm 
measures and rich phenotyping to resolve temporality, measure 
change over time and test prognostic utility across populations 
[20,92].

Independent External Validation

Require independent cohort validation as a standard for any 
proposed MRS before claims of clinical readiness [25].

Causal Inference and Functional Follow-Up

Use mQTL-based Mendelian randomisation, perturbation 
experiments and single-cell assays to distinguish causal from 
associative methylation signals and to identify actionable targets 
for intervention [38].

Clinical Impact Studies

Design pragmatic clinical trials and implementation studies 
that measure whether MRS-guided interventions improve patient 
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outcomes and are cost-effective compared with standard care [87].

Multi-Omics and Integrative Modelling

Prioritise studies that combine DNAm with transcriptomic, 
proteomic and metabolomic data to improve mechanistic 
understanding and predictive performance [18].

Explainable AI And Interoperability

Develop interpretable ML frameworks and EHR-integrated 
decision support that clinicians can use confidently [66].

Equity-Centred Design

Explicitly recruit under-represented populations, report 
sociodemographic variables in publications and assess 
performance stratified by demographic subgroups to prevent 
widening disparities [92].

Concluding Synthesis of The Theoretical Agen-
da

The theoretical case for MRS is strong: DNAm bridges genetic 
predisposition and environmental exposure, yielding biomarkers 
that are both mechanistically plausible and practically informative 
for disease prediction. Methodological advances (elastic net and 
other penalised models, ML techniques, single-cell technologies) 
and multi-omics integration have markedly increased predictive 
capacity. However, for MRS to fulfil their translational promise 
the field must confront standardisation deficits, expand cohort 
diversity, demonstrate causal relationships where possible, and 
validate clinical utility through prospective implementation 
studies. Addressing these priorities alongside careful attention to 
ethical and equity considerations will be central to embedding MRS 
and EBPs into responsible, effective clinical practice.

Discussion / Review
This expanded Discussion synthesises and critically appraises 

the evidence from the 12 studies included in the systematic 
review and situates that evidence within methodological, clinical, 
regulatory and ethical contexts. Its aim is to state clearly what 
the present evidence supports, to identify where further work 
is essential, and to outline realistic translational pathways for 
Methylation Risk Scores (MRS) that incorporate DNA methylation-
derived Epigenetic Biomarkers (EBPs).

Recap of Principal Empirical Findings

Across the twelve studies reviewed, MRS incorporating EBPs 
delivered consistent and generally moderate-to-strong predictive 
performance across a heterogeneous set of non-cancer conditions. 
Effect sizes (hazard ratios 1.4-2.3; odds ratios 1.7-2.2) and 
discrimination metrics (C-Index ~0.70-0.80; AUCs up to 0.86-0.89 in 
selected studies) indicate that MRS capture signal that is relevant for 

disease prediction and prognostication in conditions including type 
2 diabetes, cardiovascular disease, kidney disease, frailty, cognitive 
decline and osteoarthritis [35,12,86,48]. Reliability measures (ICC 
0.77-0.85; r² 0.65-0.74) support the reproducibility of methylation-
derived metrics within cohorts when standardised pipelines are 
used [20]. The recurring identification of biologically meaningful 
loci (for example, CPT1A, ABCG1, PHOSPHO1, SREBF1) strengthens 
confidence that MRS are not purely statistical artefacts but reflect 
pathophysiological processes [35,12]. Nonetheless, heterogeneity 
of study designs, platforms, cohorts and preprocessing approaches 
produces a complex evidence base in which the promise is clear but 
the route to reliable, generalisable clinical tools remains contingent 
upon addressing multiple methodological, infrastructural and 
social challenges.

Disease-Specific Considerations and Interpretation

Cardiovascular Disease: The cardiovascular applications 
reported relatively high discrimination (AUCs ≈ 0.85 in some 
studies) and high sensitivity/specificity in short-term event 
prediction [12,18]. Mechanistically, DNAm loci associated with lipid 
handling and inflammation (e.g. ABCG1, SREBF1) are plausibly 
linked to atherothrombotic risk. Clinically, the most realistic near-
term use is improved risk stratification to guide the intensity 
of preventive therapies (statin initiation, antihypertensives, 
behavioural interventions). However, clinical utility depends on 
demonstrating that reclassification by MRS changes management 
and improves hard endpoints beyond what existing calculators (e.g. 
QRISK, SCORE) accomplish.

Metabolic Disease and Type 2 Diabetes: Type 2 diabetes 
produced some of the largest AUC values and hazard ratios (e.g. 
AUC up to 0.89; HRs ≈2.1-2.3) in reviewed [86,20]. CpGs mapping 
to genes governing lipid metabolism and hepatic function (CPT1A) 
provide mechanistic plausibility. MRS could be used to identify 
high-risk individuals for intensive lifestyle or pharmacologic 
prevention; yet, as with cardiovascular disease, the imperative is 
prospective testing of whether MRS-guided prevention reduces 
incidence or complications versus standard risk stratification.
Kidney Disease and Diabetic Nephropathy: DNAm panels were 
predictive of kidney function decline and progression of diabetic 
kidney disease in several studies [50], with HRs approaching 1.9. 
Given the high clinical and economic burden of end-stage kidney 
disease, MRS that reliably predict progression might support earlier 
nephrology referral, intensified glycaemic/blood-pressure control, 
or therapeutic prioritisation. The challenge will be integrating MRS 
predictions with well-established biomarkers (eGFR, albuminuria) 
and demonstrating incremental prognostic value and actionable 
thresholds.

Frailty and Ageing Phenotypes: Epigenetic clocks and frailty 
risk scores demonstrated useful discrimination for age-related 
decline [48,16]. Because epigenetic clocks measure accumulated 
biological ageing, they may be particularly suited to population-



Am J Biomed Sci & Res

American Journal of Biomedical Science & Research

Copyright© Helen Taylor MSc

55

level stratification for preventive geriatric interventions. However, 
translating clock deviations into discrete clinical actions requires 
development of evidence-based interventions proven to alter clock 
measures and clinical endpoints.

Cognitive Outcomes and Neurodegeneration: DNAm 
associations with cognitive ability and brain health are emerging 
[86]. While predictive performance is presently moderate, 
epigenetic measures that reflect lifelong exposures or biological 
ageing could complement imaging and fluid biomarkers in risk 
stratification for neurodegenerative disease. Key gaps include 
tissue specificity (blood vs brain), the causal relevance of peripheral 
methylation marks, and the long lead times to clinical outcomes 
requiring very large longitudinal cohorts.

Osteoarthritis and Musculoskeletal Disease: Studies 
predicting knee osteoarthritis progression reported AUCs in the 
mid-0.70s to low-0.80s [27]. Here, MRS might identify patients at 
high risk of structural progression who could be prioritised for 
disease-modifying interventions as they become available. Again, 
demonstration of clinical impact such as reducing pain, improving 
mobility, or deferring joint replacement will be critical.

Psychiatric Outcomes: Associations between childhood 
trauma-linked methylation signatures and later psychiatric 
disorders show HRs around 1.8 [89]. Such predictive markers raise 
both clinical possibilities (early psychosocial support) and ethical 
challenges (stigmatisation, sensitive information); any clinical 
application must be accompanied by robust consent processes and 
supportive clinical pathways.

Methodological Critique Deeper Analysis

Assay Platforms and Probe Chemistry

Different studies used Illumina 450K arrays, EPIC arrays or 
sequencing [13,77]. Each platform has different coverage, probe 
chemistries and susceptibility to cross-hybridisation. Platform 
choice influences which CpGs are available for analyses and 
complicates pooling. Theoretical and practical solutions require 
cross-platform harmonisation strategies, probe-level mapping 
tables and, where feasible, replication using sequencing-based 
approaches that avoid array probe limitations.

Preprocessing, Normalisation and Batch Correction

The lack of consensus on preprocessing (quantile normalisation, 
functional normalisation, Noob, SWAN etc.) produces divergent 
methylation beta distributions and affects downstream feature 
selection [63]. Batch effects introduced at DNA extraction, bisulfite 
conversion or array processing can generate spurious associations 
if cases and controls are processed in different batches. Rigorous 
study design (randomisation of samples across plates), 
comprehensive batch covariate modelling and use of established 
normalisation pipelines are necessary but not uniformly applied. 

The field would benefit from a community-adopted “best practice” 
pipeline and pre-registration of preprocessing choices.

Cellular Composition and Deconvolution

Peripheral blood is a composite tissue; cell proportions vary 
with infection, inflammation and ageing. Deconvolution algorithms 
(Houseman, reference-based/non-reference) mitigate this issue but 
depend on accurate reference methylomes and assume linearity. 
Single-cell methylation technologies remove ambiguity but are 
currently resource intensive. Analytic strategies should consistently 
report whether and how cell-type effects were controlled.

Feature Selection, Penalisation and Model Stability

Elastic net has been widely used due to its capacity to 
manage multicollinearity and perform variable selection [14]. 
However, elastic net solutions can vary with tuning parameters 
and the composition of training data; bootstrap stability analyses, 
reporting of selected CpG lists with weights, and publication of 
model coefficients are needed to enable replication and meta-
analytic synthesis. Methods to assess and report model calibration 
(e.g. calibration plots, Brier scores) are underused but crucial for 
clinical reliability.

Overfitting, Optimism and Reproducibility

With high predictor:sample ratios, even penalised models can 
overfit. Independent external validation in truly distinct cohorts 
is the gold standard for establishing generalisability but was 
not universal. Where external validation occurred, it increased 
confidence; where it was absent or limited, conclusions should be 
more tentative [25]. Transparent code and data sharing, within 
ethical constraints, are essential to mitigate selective reporting and 
publication bias.

Statistical Reporting Standards

Beyond AUC or HRs, useful statistics include net reclassification 
improvement (NRI), Integrated Discrimination Improvement (IDI), 
decision-curve analysis and clinical utility metrics. Few studies 
consistently reported these. For clinical adoption, the field should 
standardise reporting to include such measures to evaluate whether 
MRS change clinical decisions and yield net patient benefit [6].

Causal Inference and Functional Validation
DNAm can be both cause and consequence. Distinguishing 

causality requires triangulation: repeated measures to establish 
temporal precedence; mQTL analyses for instrumental variable 
inference; and functional follow-up (CRISPR-based epigenome 
editing, in vitro perturbation) to demonstrate phenotypic effects. 
[38] Hüls & Czamara, et al., (2020) emphasised this point; yet, most 
included studies remain associative. Greater investment in causal 
inference and functional assays is needed before treating particular 
methylation changes as therapeutic targets.



American Journal of Biomedical Science & Research 56

Am J Biomed Sci & Res Copyright© Helen Taylor MSc

Translational Readiness and Clinical Utility

From Prediction to Practice

Predictive performance alone does not guarantee clinical utility. 
The essential next steps are pragmatic trials that test MRS-guided 
care pathways. For example, a randomised implementation trial 
might evaluate whether MRS-based stratification for pre-diabetes 
prevention reduces incident diabetes compared with guideline-
based care. Such trials should capture patient-centred outcomes, 
cost-effectiveness, acceptability and unintended harms.

Interoperability, EHR Integration and Decision Support

MRS must be packaged for clinical workflows: standardised 
laboratory reporting, integration into electronic health records 
and decision-support systems that translate a score into clear 
management options. Clinician training materials and patient-
facing explanations will be necessary to avoid misinterpretation.

Thresholds, Reclassification and Actionability

Clinical thresholds for MRS need calibration and consensus. 
Reclassification tables and decision-curve analysis should inform 
whether moving someone from low to high risk by MRS should 
alter management. Without such thresholds tied to evidence-based 
interventions, scores will be of limited use.

Economic, Regulatory and Commercial Consid-
erations

Cost-Benefit Calculus

Upfront investment in laboratory platforms, bioinformatics 
infrastructure and workforce training is substantial; however, 
modelling studies should evaluate long-term savings from 
earlier intervention, reduced hospital admissions and targeted 
therapeutics. Health economic evaluations require realistic 
assumptions about assay costs, disease prevalence and intervention 
efficacy; these analyses remain sparse.

Regulatory Pathways

Regulatory approval will require analytical and clinical 
validation. Regulators expect reproducible assays, demonstration 
of clinical validity and data on clinical utility. Currently, guidance 
for epigenetic diagnostics is evolving. Early engagement with 
regulators and alignment on validation standards will streamline 
translation [84,87].

Commercialisation And Stewardship

Commercial offerings (e.g. Cardio Diagnostics, Dionysus Health) 
illustrate private-sector interest. Commercial players can accelerate 
scale-up but must adhere to transparency, independent validation 
and equitable access principles. Public-private partnerships could 

facilitate large-scale cohort creation and broader validation if 
governed to protect public interest.

Ethical, Social and Equity Implications
Epigenetic profiles encode environmental exposures and social 

determinants; this raises the risk that MRS could act as proxies for 
disadvantage. Ethical deployment requires:

a)	 Representative recruitment to avoid models that perform 
poorly in under-represented groups [92].

b)	 Transparent communication about the probabilistic and 
modifiable nature of epigenetic risk, avoiding deterministic 
framing.

c)	 Protection against misuse by insurers or employers; policy 
frameworks must restrict discriminatory use of epigenetic 
data.

d)	 Informed consent that addresses the potential sensitivity of 
detected exposures (e.g. childhood trauma) and downstream 
implications.

Patient and public engagement should be prioritised to shape 
acceptable uses of MRS and to co-design communication materials 
that contextualise risk.

Practical Roadmap and Recommendations
To move from robust science to responsible clinical application, 

the field should pursue a phased roadmap:

Immediate (0-2 Years)

Consolidate best-practice pipelines for preprocessing and 
reporting; establish community standards for cell deconvolution 
and benchmark datasets; require external validation for publication 
claims.

Short Term (2-5 Years)

Create multi-centre consortia for diverse longitudinal 
cohorts with repeated DNAm measures; publish calibration and 
reclassification analyses; begin small pragmatic trials of MRS-guided 
interventions in high-yield use cases (e.g. diabetes prevention).

Medium Term (5-10 Years)

Scale assays to clinical laboratory standards; integrate MRS into 
EHR decision support in pilot centres; perform health economic 
analyses and engage regulators for pathway definition.

Long Term (>10 Years)

Routine clinical use where proven effective and equitable; 
development of targeted epigenetic therapeutics informed by 
causal CpG identification; international governance frameworks for 
data use and anti-discrimination protections.



Am J Biomed Sci & Res

American Journal of Biomedical Science & Research

Copyright© Helen Taylor MSc

57

Concrete methodological steps include routine publication of 
model coefficients and CpG lists, cross-platform replication efforts, 
mandatory subgroup performance reporting and pre-registration 
of analytical plans.

Limitations of the Present Review and Infer-
ence Boundaries

The review intentionally excluded cancer, narrowing its scope 
but also excluding a widely studied domain of epigenetics that 
could inform methods. The limited number of studies per disease 
and heterogeneity in methods constrain the ability to perform 
quantitative synthesis; a narrative synthesis provides interpretive 
clarity but lacks pooled effect estimates. The reliance on published 
performance metrics invites publication bias. Finally, because 
several reviewed studies used overlapping cohorts or similar 
population sources, independence of evidence must be interpreted 
cautiously.

Concluding Assessment
The assembled evidence indicates that MRS incorporating 

EBPs are a maturing class of biomarkers with genuine potential 
to improve disease prediction and stratification across a range of 
clinically important non-cancer conditions. Their strengths lie in 
dynamic sensitivity to exposures, mechanistic plausibility of key 
CpG associations and demonstrable incremental predictive value in 
several contexts. Yet the path to routine clinical use is nontrivial: 
methodological standardisation, broader population validation, 
causal and functional validation of key loci, demonstration of 
clinical utility in prospective trials, and careful ethical governance 
are all prerequisites.

If these conditions are addressed, MRS could shift preventive 
medicine and personalised care toward earlier, more precisely 
targeted interventions. Achieving that future will require 
coordinated research consortia, method standardisation, health 
economic evidence and regulatory engagement all pursued with an 
explicit equity mandate. In sum, MRS are a powerful and promising 
tool in the biomarker repertoire; realising their clinical promise 
demands rigorous, deliberate and ethically informed translation.

Conclusion
This systematic review demonstrates that Methylation Risk 

Scores (MRS) incorporating DNA methylation-derived Epigenetic 
Biomarkers (EBPs) are a promising addition to the biomarker 
landscape for non-cancer conditions. Across twelve studies 
(January 2020-May 2024), MRS consistently showed moderate-to-
strong predictive performance (HRs 1.4-2.3; ORs 1.7-2.2; C-Index/
AUC typically 0.70-0.89) and acceptable reliability (ICC 0.77-
0.85; r² 0.65-0.74), with recurring biologically plausible loci (e.g. 
CPT1A, ABCG1) underpinning mechanistic credibility [35,12,17]. 
These findings indicate that MRS can capture exposure-responsive 
molecular information that complements genetic and clinical risk 
indicators, particularly for complex, environment-modulated 

diseases such as type 2 diabetes, cardiovascular disease and frailty.

However, translation into routine clinical practice is not yet 
justified without further work. Key barriers include heterogeneous 
assay platforms and preprocessing pipelines, limited cohort 
diversity and external validation, challenges in causal inference, and 
substantial upfront costs and regulatory uncertainty [85,38,84]. 
Ethical and equity concerns demand that models be developed and 
tested in representative populations to avoid exacerbating health 
disparities [92-99].

To realise clinical utility, the field must prioritise 
standardisation of laboratory and analytic workflows, large multi-
ethnic longitudinal cohorts with repeated measures, independent 
external validation, pragmatic trials demonstrating impact on 
decision-making and outcomes, and transparent governance for 
data use. Advances in AI/ML, multi-omics integration and single-
cell epigenomics offer substantial opportunity to refine predictive 
performance and mechanistic insight, but these must be pursued 
alongside explainability and clinical interpretability [66,20].

In summary, MRS with EBPs constitute a powerful, 
mechanistically grounded tool for enhanced risk prediction. 
With rigorous standardisation, validation, and ethically informed 
implementation, they have the potential to augment personalised 
prevention and management but careful, evidence-based adoption 
is essential to ensure benefit, equity and safety.
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