.o: American Journal of
S Biomedical Science & Research

Review Article

@www.biomedgrid.com

ISSN: 2642-1747

Copyright© Helen Taylor MSc

Methylation Risk Scores Incorporating Epigenetic
Biomarkers: A Systematic Review of Diagnostic
Accuracy and Clinical Utility Across Multiple Diseases

Helen Taylor MSc*

Managing Director Evexia Group Limited, Integrative Metabolic Health, UK

*Corresponding author: Helen Taylor MSc, Managing Director Evexia Group Limited, Integrative Metabolic Health, UK.

To Cite ThisArticle: Helen Taylor MSc* Methylation Risk Scores Incorporating Epigenetic Biomarkers: A Systematic Review of Diagnostic Accuracy
and Clinical Utility Across Multiple Diseases. Am | Biomed Sci & Res. 2025 29(1) AJBSR.MS.ID.003759, DOI: 10.34297 /A]BSR.2025.29.003759

Received: & October 14, 2025; Published: & November 07, 2025

Abstract

Methylation Risk Scores (MRS) that incorporate DNA methylation-derived Epigenetic Biomarkers (EBPs) offer a promising route to improved

diagnosis, risk prediction and personalised disease management. This systematic review synthesises evidence from 12 clinical studies (January
2020-May 2024) identified via PubMed, ScienceDirect, bioRxiv and medRxiv using PRISMA-compliant screening, with studies selected on the basis
of primary human data assessing MRS/EBP performance across a range of non-cancer conditions. Data extraction captured study design, sample
size, analytic approach and key performance metrics (hazard ratios, odds ratios, C-Index, AUC, ICC, sensitivity, specificity, Pearson r?). A narrative
synthesis was performed owing to heterogeneity in cohorts, outcomes and analytic pipelines.

Across studies, MRS demonstrated consistent and moderate-to-strong predictive power: hazard ratios ranged from 1.4-2.3 and odds ratios from
1.7-2.2; C-Index values were 0.70-0.80 and AUC values reached as high as 0.89 (type 2 diabetes complications), with typical sensitivity 78-88% and
specificity 82-89%. Reliability metrics were favourable (ICC 0.77-0.85; r? 0.65-0.74). Disease contexts included metabolic syndrome, cardiovascular
events, type 2 diabetes, kidney disease, frailty, cognitive outcomes and osteoarthritis; several studies reported overlapping CpG loci and biologically
plausible gene associations (e.g. CPT1A, ABCG1), supporting mechanistic relevance [35,12,86].

Methodologically, studies employed EWAS, penalised regression (notably elastic net), machine-learning classifiers and Multi-Omics Integration
(OMICmAge), reflecting rapid methodological innovation [16,66]. Principal barriers to clinical translation include lack of standardised DNAm mea-
surement and analysis protocols, limited cohort diversity, high initial costs and regulatory uncertainty [85,87]. Emerging opportunities lie in Al/
ML enhancement, multi-omics and single-cell epigenomics, and targeted epigenetic therapeutics. In summary, current evidence indicates that MRS
incorporating EBPs can meaningfully improve disease prediction and prognostication across multiple conditions, but widespread clinical adoption

will require standardisation, broader validation in diverse populations and resolution of economic and regulatory challenges.

Scientific-Theoretical Agenda

This section sets out the theoretical foundations, methodological
principles and an applied research agenda for Methylation Risk
Scores (MRS) that incorporate DNA methylation-derived Epigenetic
Biomarkers (EBPs). It synthesises mechanistic knowledge of
epigenetics with current practice in MRS development, identifies
methodological and translational bottlenecks, and proposes
priority directions for research that would enable robust clinical
deployment.

Epigenetic Foundations and Mechanistic Rationale

Epigenetics denotes heritable changes in gene expression
that occur without alteration of the DNA sequence [47,7]. DNA
Methylation (DNAm) the covalent addition of a methyl group to
cytosine residues within CpG dinucleotides has been the most
intensively characterised mechanism because of its relative stability
in peripheral tissues and its functional impact on transcriptional
regulation Schmits, et al, (2019) [36]. Methylation of promoter-
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proximal CpG islands commonly reduces transcription factor
binding and represses gene expression, while demethylation may
permit transcriptional activation Shuai, et al, (2020) [91]. CpG
sites are non-uniformly distributed across the genome and cluster
in islands frequently associated with gene promoters; methylation
status at these loci therefore has outsized regulatory importance
[23,97,40].

From a pathophysiological perspective, DNAm integrates
genetic predisposition and environmental exposures (diet, smoking,
psychosocial stress, pollutants), providing a molecular record of
cumulative and recent exposures that can influence disease onset
and progression [67,64]. This dual sensitivity to genotype and
environment is the central theoretical justification for MRS: where
Polygenic Risk Scores (PRS) represent inherited genetic liability,
MRS can capture dynamic, exposure-responsive elements of risk
and thus potentially improve prediction for complex diseases
whose aetiology is strongly modulated by environment and lifestyle
Wattacherill, et al,, (2023) [65,43].

Constructing Methylation Risk Scores: Data,
Pipelines and Algorithms

Data Generation and Preprocessing

MRS construction typically begins with genome-wide DNAm
data generated on microarray platforms (e.g. [llumina 450K or EPIC
arrays) or by sequencing approaches [13,77]. Raw data require
rigorous preprocessing probe-level quality control, normalisation,
batch-effect correction and, where necessary, deconvolution to
account for cellular composition to reduce technical artefact and
improve comparability across cohorts [63,25]. Standardised
pipelines for these steps remain incomplete across the field,
producing one of the principal barriers to reproducibility [85].

Feature Selection and Model Training

Feature selection for MRS draws on several complementary
strategies. Epigenome-Wide Association Studies (EWAS) identify
CpG sites statistically associated with outcomes of interest, while
candidate-gene and functional genomic approaches prioritise sites
with demonstrated regulatory impact [83,62]. Machine-learning
methods (elastic net, random forest, penalised Cox models) are
then used for variable selection and model building; elastic net has
been particularly prominent because it manages multicollinearity
and high-dimensional predictor spaces common to methylation
data [30,14]. Cross-validation and independent cohort validation
remain essential to avoid overfitting and to estimate generalisable
performance [25,90].

Performance Metrics and Evaluation

Robust evaluation of MRS uses multiple complementary
metrics: discrimination (AUC, C-Index), calibration, effect size
(hazard ratios, odds ratios), and reliability (intra-class correlation,
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Pearson r?). Sensitivity and specificity characterise classification
performance where thresholds are applied [1-10,11-29]. Reporting
across these metrics, alongside transparent methods for feature
selection and weighting, is crucial for cross-study comparison and
clinical interpretation.

Biological Plausibility and Cross-Disease Sig-
nal

A compelling theoretical prerequisite for MRS is biological
plausibility: the CpG sites that contribute substantially to a score
should map to genes and pathways mechanistically connected
to the phenotype. Across the reviewed literature, recurring loci
(for example, CPT1A and ABCG1) and loci associated with lipid
metabolism, inflammation and cellular ageing support mechanistic
interpretation for metabolic and cardiovascular endpoints [30-
35,12]. The identification of overlapping CpGs across different
disease endpoints suggests that certain epigenetic signatures
reflect shared pathophysiological axes (inflammation, metabolic
dysfunction, biological ageing) and may underpin pleiotropic
predictive utility across conditions such as metabolic syndrome,
cardiovascular disease and frailty Marioni, et al, (2015); Li, et al,
(2022).

Epigenetic Clocks, Ebps and Conceptual No-
menclature

Epigenetic clocks (Horvath’s clock, Hannum, PhenoAge and
more recent integrative measures such as OMICmAge) provide
quantitative indices of biological age derived from DNAm patterns
and have proven predictive of mortality and age-related morbidity
[36-53,8,17]. These clocks form a subset of EBPs and illustrate how
methylation patterns can summarise latent biological processes.
However, the field suffers from inconsistent terminology (EBP,
EpiSigns, EpiScores), hindering comparability and translation. A
theoretical agenda must therefore prioritise consensus definitions
and taxonomies to ensure clarity in how different classes of
methylation-derived markers are described and validated [54-92].

Methodological Limitations and Sources of
Bias

Cohort Heterogeneity and Population Generalisability

A recurrent methodological concern is cohort composition.
Many studies to date are drawn from relatively homogeneous
populations which reduces power to detect population-specific
effects and limits external validity [92]. Meta-analytic integration is
hampered by heterogeneity of cohorts, phenotype definitions and
assay platforms.

Technical Variability

Differences in array platforms, laboratory procedures, and
preprocessing choices introduce batch effects and technical noise
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that can masquerade as biological signal [21]. Lack of standardised
pipelines for preprocessing and normalisation therefore threatens
reproducibility [85].

Cellular Heterogeneity and Sample Type

Peripheral blood is commonly used for convenience but
comprises mixed cell types whose proportions vary with age, health
status and acute exposures. Without adequate deconvolution,
observed DNAm differences may reflect shifts in cell composition
rather than locus-specific regulation [63].

Confounding, Causality and Temporality

DNAm is both a potential mediator and a consequence of
disease and exposure. Distinguishing causal methylation changes
from epiphenomena requires longitudinal designs, repeated
measures and methods such as Mendelian randomisation
leveraging Methylation Quantitative Trait Loci (mQTLs). Cross-

sectional associations alone cannot establish causality [38].

Integration With Other Data Modalities and
Advanced Technologies

Multi-Omics and Single-Cell Epigenomics

Combining DNAm with transcriptomics, proteomics and
metabolomics (multi-omics) promises richer, mechanistically
informed risk models and is exemplified by integrative efforts
such as OMICmAge [18]. Single-cell bisulfite sequencing and other
single-cell epigenomic methods resolve cellular heterogeneity and
can pinpoint cell-type-specific methylation changes relevant to
disease [37,26]. The theoretical value is clear: models built with
multi-layered molecular data should better capture disease biology
and may improve both sensitivity and specificity.

Artificial Intelligence, Explainability and Model

Robustness

Al and machine learning including deep learning can extract
complex, non-linear patterns from high-dimensional methylation
data [66,45]. Yet clinical translation demands interpretable
models that clinicians can interrogate. The agenda must therefore
stress development of explainable Al approaches, techniques for
model calibration, external validation and assessment of clinical
net benefit (decision-curve analysis) rather than sole reliance on
statistical discrimination metrics.

Clinical Translation: Regulatory, Economic and
Workflow Considerations

The utility of MRS will be determined by clinical validity and
clinical utility. Beyond accuracy, MRS must demonstrate that their
use changes clinical decisions in ways that improve outcomes and
are cost-effective. Regulatory approval will require standardised

Copyright© Helen Taylor MSc

assays, reproducible pipelines, prospective validation and clinical
trials demonstrating impact on care pathways [87,84].

Health-system integration implies interoperability with
electronic health records, decision-support tools that synthesise
MRS with other risk factors, and training for clinicians to interpret
and communicate epigenetic risk [87,55]. Economic assessments
should consider both the upfront costs of assay implementation
and potential downstream savings from earlier diagnosis, reduced
invasive testing and better-targeted therapies (Impact Statement).

Ethical, Social and Equity Imperatives

Epigenetic markers are sensitive to social and environmental
determinants of health. If development datasets under-represent
marginalised groups, MRS risk perpetuating or exacerbating
health disparities [92]. The agenda must prioritise inclusive cohort
recruitment, transparentreporting of sociodemographic covariates,
and embedding equity considerations in model development and
deployment. Consent procedures must also reflect the potential for
epigenetic data to reveal sensitive life-course exposures.

Priority Research Agenda and Recommended
Study Designs

To progress from promising research instruments to clinically
useful tools, the following research priorities are proposed:

Standardisation Initiatives

Develop community consensus on preprocessing pipelines,
normalisation strategies, reporting standards and nomenclature
for EBPs and MRS [85,38].

Large, Diverse, Longitudinal Cohorts

Invest in multi-centre longitudinal studies with repeated DNAm
measures and rich phenotyping to resolve temporality, measure
change over time and test prognostic utility across populations
[20,92].

Independent External Validation

Require independent cohort validation as a standard for any
proposed MRS before claims of clinical readiness [25].

Causal Inference and Functional Follow-Up

Use mQTL-based Mendelian randomisation, perturbation
experiments and single-cell assays to distinguish causal from
associative methylation signals and to identify actionable targets
for intervention [38].

Clinical Impact Studies

Design pragmatic clinical trials and implementation studies
that measure whether MRS-guided interventions improve patient
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outcomes and are cost-effective compared with standard care [87].

Multi-Omics and Integrative Modelling

Prioritise studies that combine DNAm with transcriptomic,
proteomic and metabolomic data to improve mechanistic
understanding and predictive performance [18].

Explainable Al And Interoperability

Develop interpretable ML frameworks and EHR-integrated
decision support that clinicians can use confidently [66].

Equity-Centred Design

Explicitly recruit under-represented populations, report

sociodemographic variables in publications and assess
performance stratified by demographic subgroups to prevent

widening disparities [92].

Concluding Synthesis of The Theoretical Agen-
da

The theoretical case for MRS is strong: DNAm bridges genetic
predisposition and environmental exposure, yielding biomarkers
that are both mechanistically plausible and practically informative
for disease prediction. Methodological advances (elastic net and
other penalised models, ML techniques, single-cell technologies)
and multi-omics integration have markedly increased predictive
capacity. However, for MRS to fulfil their translational promise
the field must confront standardisation deficits, expand cohort
diversity, demonstrate causal relationships where possible, and
validate clinical utility through prospective implementation
studies. Addressing these priorities alongside careful attention to
ethical and equity considerations will be central to embedding MRS
and EBPs into responsible, effective clinical practice.

Discussion / Review

This expanded Discussion synthesises and critically appraises
the evidence from the 12 studies included in the systematic
review and situates that evidence within methodological, clinical,
regulatory and ethical contexts. Its aim is to state clearly what
the present evidence supports, to identify where further work
is essential, and to outline realistic translational pathways for
Methylation Risk Scores (MRS) that incorporate DNA methylation-
derived Epigenetic Biomarkers (EBPs).

Recap of Principal Empirical Findings

Across the twelve studies reviewed, MRS incorporating EBPs
delivered consistent and generally moderate-to-strong predictive
performance across a heterogeneous set of non-cancer conditions.
Effect sizes (hazard ratios 1.4-2.3; odds ratios 1.7-2.2) and
discrimination metrics (C-Index ~0.70-0.80; AUCs up to 0.86-0.89 in
selected studies) indicate that MRS capture signal that is relevant for
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disease prediction and prognostication in conditions including type
2 diabetes, cardiovascular disease, kidney disease, frailty, cognitive
decline and osteoarthritis [35,12,86,48]. Reliability measures (ICC
0.77-0.85; r? 0.65-0.74) support the reproducibility of methylation-
derived metrics within cohorts when standardised pipelines are
used [20]. The recurring identification of biologically meaningful
loci (for example, CPT1A, ABCG1, PHOSPHO1, SREBF1) strengthens
confidence that MRS are not purely statistical artefacts but reflect
pathophysiological processes [35,12]. Nonetheless, heterogeneity
of study designs, platforms, cohorts and preprocessing approaches
produces a complex evidence base in which the promise is clear but
the route to reliable, generalisable clinical tools remains contingent
upon addressing multiple methodological, infrastructural and
social challenges.

Disease-Specific Considerations and Interpretation

Cardiovascular Disease: The cardiovascular applications
reported relatively high discrimination (AUCs = 0.85 in some
studies) and high sensitivity/specificity in short-term event
prediction [12,18]. Mechanistically, DNAm loci associated with lipid
handling and inflammation (e.g. ABCG1, SREBF1) are plausibly
linked to atherothrombotic risk. Clinically, the most realistic near-
term use is improved risk stratification to guide the intensity
of preventive therapies (statin initiation, antihypertensives,
behavioural interventions). However, clinical utility depends on
demonstrating that reclassification by MRS changes management
and improves hard endpoints beyond what existing calculators (e.g.
QRISK, SCORE) accomplish.

Metabolic Disease and Type 2 Diabetes: Type 2 diabetes
produced some of the largest AUC values and hazard ratios (e.g.
AUC up to 0.89; HRs %2.1-2.3) in reviewed [86,20]. CpGs mapping
to genes governing lipid metabolism and hepatic function (CPT1A)
provide mechanistic plausibility. MRS could be used to identify
high-risk individuals for intensive lifestyle or pharmacologic
prevention; yet, as with cardiovascular disease, the imperative is
prospective testing of whether MRS-guided prevention reduces
incidence or complications versus standard risk stratification.
Kidney Disease and Diabetic Nephropathy: DNAm panels were
predictive of kidney function decline and progression of diabetic
kidney disease in several studies [50], with HRs approaching 1.9.
Given the high clinical and economic burden of end-stage kidney
disease, MRS that reliably predict progression might support earlier
nephrology referral, intensified glycaemic/blood-pressure control,
or therapeutic prioritisation. The challenge will be integrating MRS
predictions with well-established biomarkers (eGFR, albuminuria)
and demonstrating incremental prognostic value and actionable
thresholds.

Frailty and Ageing Phenotypes: Epigenetic clocks and frailty
risk scores demonstrated useful discrimination for age-related
decline [48,16]. Because epigenetic clocks measure accumulated
biological ageing, they may be particularly suited to population-

American Journal of Biomedical Science & Research



Am ] Biomed Sci & Res

level stratification for preventive geriatric interventions. However,
translating clock deviations into discrete clinical actions requires
development of evidence-based interventions proven to alter clock
measures and clinical endpoints.

Cognitive Outcomes and Neurodegeneration: DNAm
associations with cognitive ability and brain health are emerging
[86]. While predictive performance is presently moderate,
epigenetic measures that reflect lifelong exposures or biological
ageing could complement imaging and fluid biomarkers in risk
stratification for neurodegenerative disease. Key gaps include
tissue specificity (blood vs brain), the causal relevance of peripheral
methylation marks, and the long lead times to clinical outcomes

requiring very large longitudinal cohorts.

Studies
predicting knee osteoarthritis progression reported AUCs in the
mid-0.70s to low-0.80s [27]. Here, MRS might identify patients at
high risk of structural progression who could be prioritised for
disease-modifying interventions as they become available. Again,

Osteoarthritis and Musculoskeletal Disease:

demonstration of clinical impact such as reducing pain, improving
mobility, or deferring joint replacement will be critical.

Psychiatric Outcomes: Associations between childhood
trauma-linked methylation signatures and later psychiatric
disorders show HRs around 1.8 [89]. Such predictive markers raise
both clinical possibilities (early psychosocial support) and ethical
challenges (stigmatisation, sensitive information); any clinical
application must be accompanied by robust consent processes and

supportive clinical pathways.
Methodological Critique Deeper Analysis

Assay Platforms and Probe Chemistry

Different studies used Illumina 450K arrays, EPIC arrays or
sequencing [13,77]. Each platform has different coverage, probe
chemistries and susceptibility to cross-hybridisation. Platform
choice influences which CpGs are available for analyses and
complicates pooling. Theoretical and practical solutions require
cross-platform harmonisation strategies, probe-level mapping
tables and, where feasible, replication using sequencing-based
approaches that avoid array probe limitations.

Preprocessing, Normalisation and Batch Correction

Thelack of consensus on preprocessing (quantile normalisation,
functional normalisation, Noob, SWAN etc.) produces divergent
methylation beta distributions and affects downstream feature
selection [63]. Batch effects introduced at DNA extraction, bisulfite
conversion or array processing can generate spurious associations
if cases and controls are processed in different batches. Rigorous
study design (randomisation of samples plates),
comprehensive batch covariate modelling and use of established
normalisation pipelines are necessary but not uniformly applied.

across
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The field would benefit from a community-adopted “best practice”
pipeline and pre-registration of preprocessing choices.

Cellular Composition and Deconvolution

Peripheral blood is a composite tissue; cell proportions vary
with infection, inflammation and ageing. Deconvolution algorithms
(Houseman, reference-based/non-reference) mitigate this issue but
depend on accurate reference methylomes and assume linearity.
Single-cell methylation technologies remove ambiguity but are
currently resource intensive. Analytic strategies should consistently
report whether and how cell-type effects were controlled.

Feature Selection, Penalisation and Model Stability

Elastic net has been widely used due to its capacity to
manage multicollinearity and perform variable selection [14].
However, elastic net solutions can vary with tuning parameters
and the composition of training data; bootstrap stability analyses,
reporting of selected CpG lists with weights, and publication of
model coefficients are needed to enable replication and meta-
analytic synthesis. Methods to assess and report model calibration
(e.g. calibration plots, Brier scores) are underused but crucial for
clinical reliability.

Overfitting, Optimism and Reproducibility

With high predictor:sample ratios, even penalised models can
overfit. Independent external validation in truly distinct cohorts
is the gold standard for establishing generalisability but was
not universal. Where external validation occurred, it increased
confidence; where it was absent or limited, conclusions should be
more tentative [25]. Transparent code and data sharing, within
ethical constraints, are essential to mitigate selective reporting and
publication bias.

Statistical Reporting Standards

Beyond AUC or HRs, useful statistics include net reclassification
improvement (NRI), Integrated Discrimination Improvement (IDI),
decision-curve analysis and clinical utility metrics. Few studies
consistently reported these. For clinical adoption, the field should
standardise reporting to include such measures to evaluate whether
MRS change clinical decisions and yield net patient benefit [6].

Causal Inference and Functional Validation

DNAm can be both cause and consequence. Distinguishing
causality requires triangulation: repeated measures to establish
temporal precedence; mQTL analyses for instrumental variable
inference; and functional follow-up (CRISPR-based epigenome
editing, in vitro perturbation) to demonstrate phenotypic effects.
[38] Hiils & Czamara, et al,, (2020) emphasised this point; yet, most
included studies remain associative. Greater investment in causal
inference and functional assays is needed before treating particular
methylation changes as therapeutic targets.
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Translational Readiness and Clinical Utility

From Prediction to Practice

Predictive performance alone does not guarantee clinical utility.
The essential next steps are pragmatic trials that test MRS-guided
care pathways. For example, a randomised implementation trial
might evaluate whether MRS-based stratification for pre-diabetes
prevention reduces incident diabetes compared with guideline-
based care. Such trials should capture patient-centred outcomes,
cost-effectiveness, acceptability and unintended harms.

Interoperability, EHR Integration and Decision Support

MRS must be packaged for clinical workflows: standardised
laboratory reporting, integration into electronic health records
and decision-support systems that translate a score into clear
management options. Clinician training materials and patient-
facing explanations will be necessary to avoid misinterpretation.

Thresholds, Reclassification and Actionability

Clinical thresholds for MRS need calibration and consensus.
Reclassification tables and decision-curve analysis should inform
whether moving someone from low to high risk by MRS should
alter management. Without such thresholds tied to evidence-based
interventions, scores will be of limited use.

Economic, Regulatory and Commercial Consid-
erations

Cost-Benefit Calculus

Upfront investment in laboratory platforms, bioinformatics
infrastructure and workforce training is substantial; however,
modelling studies should evaluate long-term savings from
earlier intervention, reduced hospital admissions and targeted
therapeutics. require realistic
assumptions about assay costs, disease prevalence and intervention
efficacy; these analyses remain sparse.

Health economic evaluations

Regulatory Pathways

Regulatory approval will require analytical and clinical
validation. Regulators expect reproducible assays, demonstration
of clinical validity and data on clinical utility. Currently, guidance
for epigenetic diagnostics is evolving. Early engagement with
regulators and alignment on validation standards will streamline
translation [84,87].

Commercialisation And Stewardship

Commercial offerings (e.g. Cardio Diagnostics, Dionysus Health)
illustrate private-sector interest. Commercial players can accelerate
scale-up but must adhere to transparency, independent validation
and equitable access principles. Public-private partnerships could

Copyright© Helen Taylor MSc

facilitate large-scale cohort creation and broader validation if
governed to protect public interest.

Ethical, Social and Equity Implications

Epigenetic profiles encode environmental exposures and social
determinants; this raises the risk that MRS could act as proxies for
disadvantage. Ethical deployment requires:

a) Representative recruitment to avoid models that perform
poorly in under-represented groups [92].

b) Transparent communication about the probabilistic and
modifiable nature of epigenetic risk, avoiding deterministic
framing.

c) Protection against misuse by insurers or employers; policy
frameworks must restrict discriminatory use of epigenetic
data.

d) Informed consent that addresses the potential sensitivity of
detected exposures (e.g. childhood trauma) and downstream
implications.

Patient and public engagement should be prioritised to shape
acceptable uses of MRS and to co-design communication materials
that contextualise risk.

Practical Roadmap and Recommendations

To move from robust science to responsible clinical application,
the field should pursue a phased roadmap:

Immediate (0-2 Years)

Consolidate best-practice pipelines for preprocessing and
reporting; establish community standards for cell deconvolution
and benchmark datasets; require external validation for publication
claims.

Short Term (2-5 Years)

Create multi-centre consortia for diverse longitudinal
cohorts with repeated DNAm measures; publish calibration and
reclassification analyses; begin small pragmatic trials of MRS-guided
interventions in high-yield use cases (e.g. diabetes prevention).

Medium Term (5-10 Years)

Scale assays to clinical laboratory standards; integrate MRS into
EHR decision support in pilot centres; perform health economic
analyses and engage regulators for pathway definition.

Long Term (>10 Years)

Routine clinical use where proven effective and equitable;
development of targeted epigenetic therapeutics informed by
causal CpG identification; international governance frameworks for
data use and anti-discrimination protections.
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Concrete methodological steps include routine publication of
model coefficients and CpG lists, cross-platform replication efforts,
mandatory subgroup performance reporting and pre-registration
of analytical plans.

Limitations of the Present Review and Infer-
ence Boundaries

The review intentionally excluded cancer, narrowing its scope
but also excluding a widely studied domain of epigenetics that
could inform methods. The limited number of studies per disease
and heterogeneity in methods constrain the ability to perform
quantitative synthesis; a narrative synthesis provides interpretive
clarity but lacks pooled effect estimates. The reliance on published
performance metrics invites publication bias. Finally, because
several reviewed studies used overlapping cohorts or similar
population sources, independence of evidence must be interpreted
cautiously.

Concluding Assessment

The assembled evidence indicates that MRS incorporating
EBPs are a maturing class of biomarkers with genuine potential
to improve disease prediction and stratification across a range of
clinically important non-cancer conditions. Their strengths lie in
dynamic sensitivity to exposures, mechanistic plausibility of key
CpG associations and demonstrable incremental predictive value in
several contexts. Yet the path to routine clinical use is nontrivial:
methodological standardisation, broader population validation,
causal and functional validation of key loci, demonstration of
clinical utility in prospective trials, and careful ethical governance
are all prerequisites.

If these conditions are addressed, MRS could shift preventive
medicine and personalised care toward earlier, more precisely
targeted interventions. Achieving that future will
coordinated research consortia, method standardisation, health

require

economic evidence and regulatory engagement all pursued with an
explicit equity mandate. In sum, MRS are a powerful and promising
tool in the biomarker repertoire; realising their clinical promise
demands rigorous, deliberate and ethically informed translation.

Conclusion

This systematic review demonstrates that Methylation Risk
Scores (MRS) incorporating DNA methylation-derived Epigenetic
Biomarkers (EBPs) are a promising addition to the biomarker
landscape for non-cancer conditions. Across twelve studies
(January 2020-May 2024), MRS consistently showed moderate-to-
strong predictive performance (HRs 1.4-2.3; ORs 1.7-2.2; C-Index/
AUC typically 0.70-0.89) and acceptable reliability (ICC 0.77-
0.85; r? 0.65-0.74), with recurring biologically plausible loci (e.g.
CPT1A, ABCG1) underpinning mechanistic credibility [35,12,17].
These findings indicate that MRS can capture exposure-responsive
molecular information that complements genetic and clinical risk
environment-modulated

indicators, particularly for complex,
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diseases such as type 2 diabetes, cardiovascular disease and frailty.

However, translation into routine clinical practice is not yet
justified without further work. Key barriers include heterogeneous
assay platforms and preprocessing pipelines, limited cohort
diversity and external validation, challenges in causal inference, and
substantial upfront costs and regulatory uncertainty [85,38,84].
Ethical and equity concerns demand that models be developed and
tested in representative populations to avoid exacerbating health
disparities [92-99].

To realise clinical utility, the field must prioritise
standardisation of laboratory and analytic workflows, large multi-
ethnic longitudinal cohorts with repeated measures, independent
external validation, pragmatic trials demonstrating impact on
decision-making and outcomes, and transparent governance for
data use. Advances in Al/ML, multi-omics integration and single-
cell epigenomics offer substantial opportunity to refine predictive
performance and mechanistic insight, but these must be pursued

alongside explainability and clinical interpretability [66,20].

In summary, MRS with EBPs constitute a powerful,
mechanistically grounded tool for enhanced risk prediction.
With rigorous standardisation, validation, and ethically informed
implementation, they have the potential to augment personalised
prevention and management but careful, evidence-based adoption

is essential to ensure benefit, equity and safety.
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