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Introduction
Enteritis is an inflammatory disease of the intestine, threatening 

the health of many individuals. The incidence of enteritis is rising 
continuously in Asia [1], imposing a heavy medical burden on 
society as patients must receive long-term treatment to avoid severe 
complications [2]. In this review, enteritis is categorized into viral 
enteritis, bacterial enteritis, parasitic enteritis, and Inflammatory 
Bowel Disease (IBD), with IBD representing a distinct subtype of 
enteritis characterized by chronic, immune-mediated intestinal 
inflammation. Sigurgeir Olafsson et al. sequenced 446 colon crypts 
from 46 patients with IBD, a cause of enteritis, and reported altered 
cell mutation and clonal structures compared to control crypts [3]. 
Furthermore, necrotic apoptosis of the intestinal stem cells induced 
by genomic instability can trigger intestinal inflammation [4]. The 
growing risk of IBD in humans is closely linked to high levels of 
psychological stress [5], advancing urbanization, and increasing 
westernization of dietary habits [6], particularly in regions 
experiencing rapid economic development, where the incidence of 
enteritis is considerable and has become an urgent clinical issue.

There are many existing treatment methods for enteritis, 
each with its own advantages and limitations. Drug treatments 
are expedient but may produce side effects, especially when 
using antibiotics, that can imbalance gut microbiota and lead to 
the development of bacterial resistance over long-term use [7]. 
Furthermore, nutritional therapy is slow and requires long-term 
adherence, surgical treatment is invasive and carries risks, and 

traditional Chinese medicine has a long treatment cycle using 
therapies that may not be supported by evidence. These limitations 
necessitate the development of low-side-effect drugs, reduction in 
antibiotic dependence, exploration of efficient non-pharmaceutical 
therapies, and proposal of new surgical pathways for enteritis 
treatment.

In recent years, Metal–Polyphenol Networks (MPNs) have 
emerged as an innovative organic–inorganic hybrid biomaterial. 
For example, a colorless antibacterial and deodorizing MPN coating 
made from the rapid assembly of plant polyphenols and silver ions 
has shown significant inhibitory effects against enveloped viruses, 
Gram-positive and Gram-negative bacteria, and fungi; experiments 
confirmed that this MPN coating provided far superior inhibition 
efficiency against the Phi6 virus compared to that of other metal ion 
coatings and maintained excellent antibacterial performance even 
after multiple washes [8]. Furthermore, MPNs can enhance the 
bioavailability of polyphenols in tumor treatment, exert immune-
regulating effects, inhibit tumor growth, and serve as multifunctional 
nanoplatforms to improve the targeting and effectiveness of tumor 
therapies [9]. They can also enhance antibacterial and antifungal 
activities against oral infections, effectively killing Streptococcus 
mutans, Enterococcus faecalis, and Candida albicans through 
enzyme-like oxidation and photothermal effects [10]. Ligand MPN 
nano enzymes can efficiently scavenge Reactive Oxygen Species 
(ROS), protect cells from oxidative damage, and promote diabetic 
wound healing through epithelial regeneration, collagen deposition, 
angiogenesis, and immune regulation [11].
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The use of MPNs for the treatment of enteritis is quite promising 
owing to their immune-regulating properties, ability to inhibit the 
development of inflammation by enhancing bioavailability, and 
applicability as multifunctional platforms to improve treatment 
targeting. They can also scavenge ROS, protect intestinal cells, 
and accelerate the healing of inflammation, and their strong 
antibacterial activity effectively inhibits the growth of harmful 
bacteria in the intestine [12], reduces inflammatory responses, 
providing direct relief to patients. The antioxidant capacity 
associated with MPNs is also noteworthy as it can eliminate excess 
free radicals in the body, reduce oxidative stress damage to the 
intestines, and protect the integrity of the intestinal mucosa [13]. 
Finally, the excellent bio adhesive properties of MPNs allow them 
to adhere closely to the surface of the intestinal mucosa where they 
form a robust protective layer that promotes intestinal repair and 
regeneration while providing patients with lasting protection [14]. 
As such, the application of MPNs for the treatment of enteritis is 
expected to rapidly cure this disease.

In summary, the prospective application of MPNs to treat 
enteritis are quite broad as their unique structural and functional 
characteristics provide ideas and solutions for addressing the 
many challenges associated with enteritis treatment. This review 
accordingly explores the characteristics of MPNs as well as their 
application prospects for enteritis treatment to provide a theoretical 
basis and practical reference for the development of new enteritis 
treatment methods.

Causes of Enteritis and Current Methods for 
Treatment

Enteritis refers to inflammatory lesions in the intestines leading 
to pathological changes such as damage to the intestinal mucosa, 
congestion, and edema; it can be caused by a variety of factors, 
including bacteria, viruses, parasites, and IBD.

Bacterial Enteritis

Bacterial enteritis is caused by bacteria including Salmonella, 
Shigella, and Vibrio parahaemolyticus. Upon entering the human 
body, Salmonella specifically attacks the epithelial cells of the ileum 
and colon [15] while utilizing the proteins encoded by Salmonella 
Pathogenicity Island Type 2 (SPI2) to form replication vacuoles 
within the cells, allowing for extensive proliferation and enabling the 
bacteria to evade host immune clearance mechanisms. Experiments 
conducted in mouse models have shown that Salmonella lacking 
the SPI2 type III secretion system (T3SS) exhibits a significantly 
reduced migratory ability. This finding confirms that SPI2 T3SS 
effector proteins promote the transport of Salmonella-containing 
vacuoles to facilitate their migration from the apical side to the 
basolateral side of intestinal epithelial cells [16]. The proteins 
encoded by these gene clusters disrupt the normal physiological 
functions of host cells, leading to cell death and tissue damage, 
which in turn cause neutrophilic gastroenteritis [17].

Howlader et al. observed that Shigella enters the adult zebrafish 
body through the intestine, where it subsequently proliferates 
throughout the gut and triggers an inflammatory response that 
causes intestinal inflammation accompanied by the infiltration of 
neutrophils and phagocytes [18]. Notably, Shigella is able to suppress 
inflammatory responses to evade host immune surveillance [19] 
and has developed resistance to various antibiotics, including first-
line antibiotics such as ciprofloxacin [20]. These factors contribute 
to challenges in effectively curing Shigella-induced enteritis using 
existing treatments.

Finally, Vibrio parahaemolyticus causes enteritis through its 
unique virulence and intestinal colonization ability [21], which is 
facilitated by the direct injection of T3SS-2 effector proteins [22], 
such as VopY, into the intestinal epithelial cell membrane, where 
they interfere with normal cell functions, damaging or even killing 
cells and triggering an inflammatory response in the intestine. 
Critically, when intestinal epithelial cells are damaged, they release 
inflammatory factors that attract immune cells such as neutrophils 
to the site of inflammation, further exacerbating the inflammatory 
response [23]. Current treatment methods for bacterial enteritis 
include the use of antibiotics to control infections. However, long-
term use or abuse of antibiotics can lead to bacterial resistance, 
and while antibiotics kill harmful bacteria, they can also harm 
beneficial bacteria, resulting in an imbalance in gut microbiota 
that necessitates the use of probiotics to improve the intestinal 
microenvironment [24].

Viral Enteritis

Viral enteritis is primarily caused by Rotavirus, Norovirus, and 
Adenovirus infections. Rotavirus enters cells through endocytosis 
by binding its VP4 and VP7 surface proteins to receptors on the 
surfaces of host intestinal epithelial cells. After entering a cell, 
the virus releases its RNA genome and utilizes the translation and 
replication mechanisms in the host cell to synthesize viral proteins 
and replicate RNA [25]. The non-structural protein (NSP1) plays a 
crucial role in this process by antagonizing the host Interferon (IFN) 
signaling pathway to promote viral replication within the cell [26]; 
however, the metabolic products generated by NSP1 during viral 
replication can also damage the intestinal epithelial cells. Critically, 
the replication and pathogenic effects of Rotavirus proteins in 
intestinal epithelial cells can impair intestinal barrier function.

Hassan et al. demonstrated that Norovirus infections 
significantly altered the composition of the intestinal 
microenvironment, disrupting the normal gut flora and leading to 
intestinal inflammation in mice [27]. Moreover, as Norovirus is an 
RNA virus [28], it is prone to mutations that have hindered efforts 
to develop a vaccine against it, leaving the treatment of Norovirus-
induced enteritis without targeted solutions. Finally, Hemmi et 
al. studied the pathogenic mechanisms of Adenovirus in mice, 
reporting that it enters intestinal epithelial cells through receptor-
mediated endocytosis [29]. Once viral deoxyribonucleic acid DNA 



American Journal of Biomedical Science & Research 118

Am J Biomed Sci & Res Copyright© Weifang Liao

enters the cell nucleus, it utilizes the transcription and translation 
systems of intestinal epithelial cells to synthesize viral proteins and 
replicate its own DNA. After these components are assembled into 
new viral particles, they are released into the extracellular space via 
cell lysis or exocytosis [30]. No specific antiviral drugs are currently 
available for most cases of virus-induced enteritis.

Parasitic Enteritis

Parasitic enteritis is an infectious disease caused by an invasion 
of parasites into the intestinal tract. The pathogens responsible 
for parasitic enteritis include Schistosoma japonicum, Ascaris 
lumbricoides, and hookworms. The pathogenesis of schistosomiasis-
induced enteritis primarily involves the deposition of eggs in the 
intestinal wall tissue, which leads to cellular infiltration and the 
formation of egg granulomas that produce tissue necrosis and 
inflammatory responses, triggering enteritis [31]. The pathogenesis 
of Ascaris-induced enteritis involves the activity of Ascaris larvae 
or adults in the intestinal tract, which irritates and damages 
the intestinal mucosa, leading to inflammatory responses and 
intestinal diseases [32]. Finally, the pathogenesis of hookworm-
induced enteritis primarily involves the presence of hookworm 
larvae or adults in the intestinal tract, where they obtain nutrients 
by consuming the host’s blood, damaging the intestinal mucosal 
epithelial cells, inducing inflammatory responses and forming 
ulcers [33].

Treatments for parasitic enteritis include drug and 
immunomodulatory therapies using antiparasitic drugs such as 
albendazole or metronidazole. These drugs can effectively kill or 
inhibit the growth of parasites to alleviate the symptoms caused 
by parasitic infections. However, the use of such drug therapies 
is limited by potential side effects and the possibility of targeted 
parasites developing drug resistance [34]. Additionally, the 
accurate diagnosis of parasitic infections can be difficult, leading 
to untimely treatment or inappropriate drug selection. Finally, 
parasitic infections may be accompanied by other complications, 
such as intestinal obstruction or intestinal perforation, that obscure 
the cause of the issue.

IBD

A chronic and recurrent inflammatory disease of the intestinal 
tract, IBD can be generally classified as resulting from either 
Crohn’s Disease (CD) or Ulcerative Colitis (UC). The pathogenesis 
of IBD is extremely complex as it involves genetic, environmental, 
immune, and microbial factors. Genetically, patients with IBD 
typically possess multiple susceptibility gene mutations that can 
affect the intestinal immune balance, increasing abnormal immune 
responses to intestinal microbes. Genome-wide association studies 
have identified multiple gene variants associated with IBD that are 
involved in pathways related to immune regulation, cell signalling, 
and apoptosis [35]. In particular, the ATG16L1 and NOD2 genes 
play critical roles in the regulation of intestinal health: the former is 

involved in autophagy, and its mutations affect bacterial clearance 
and exacerbate intestinal inflammation; the latter recognizes 
microbes, and while its mutations increase the risk of IBD, they 
can alleviate inflammation owing to specific bacteria [36]. Indeed, 
the interaction between these two genes may be disrupted by 
NOD2 mutations, leading to impaired autophagy. Studies have 
shown that the absence of ATG16L1 enhances the inflammatory 
response under endoplasmic reticulum stress, particularly through 
the ATF6 pathway [37], thereby promoting the expression of pro-
inflammatory factors. These findings reveal the complex role of 
gene mutations in intestinal inflammation.

Immune dysregulation forms the core of IBD pathogenesis. 
This occurs when immune cells in the body, such as T cells, B cells, 
and macrophages, respond abnormally to gut microbiota, leading 
to persistent inflammation of the intestinal mucosa [38]. Ileum 
and colon biopsies were performed on 71 patients with CD and 25 
control patients to conduct single-cell RNA sequencing analyses 
of 720,633 cells. Significant changes in the compositions of the 
immune cells were observed in the inflamed areas, particularly in T 
and myeloid cells [39].

Finally, gut microbiota also plays a key role in IBD pathogenesis. 
Metabolites produced by gut microbiota, particularly Short-
Chain Fatty Acids (SCFAs) and indole derivatives, are critical to 
maintaining intestinal homeostasis: the former protect gut health 
by influencing cellular energy metabolism and epithelial barrier 
function, whereas the latter suppress inflammation by regulating 
immune response [40]. Gut microbiota generates SCFAs through 
the fermentation of dietary fiber, which helps to maintain epithelial 
barrier function. Notably, an Epigallocatechin Gallate (EGCG)-rich 
diet promotes the proliferation of Akkermansia and increases 
SCFA production, enhancing intestinal antioxidant capacity and 
inhibiting pro-inflammatory factors to alleviate Dextran Sodium 
Sulfate (DSS)-induced colitis. Fecal microbiota transplantation 
experiments have shown that SCFA-rich microbiota significantly 
improved IBD symptoms in recipient mice by enhancing antioxidant 
and anti-inflammatory effects [41]. Exposure of the HCT-8 human 
intestinal epithelial cell line to indole strengthened the mucosal 
barrier and mucin-related genes expression, downregulated pro-
inflammatory interleukin (IL)-8, upregulated anti-inflammatory IL-
10, and enhanced transepithelial resistance and barrier function. 
Furthermore, indole pretreatment reduced the attachment of 
enterohemorrhagic Escherichia coli to cells, thereby decreasing 
pathogen colonization. Finally, indole upregulated the anti-
inflammatory Toll-Like Receptor (TLR) and Phosphatidylinositol 
3 Kinase (PI3K) pathway genes to regulate the TLR signaling 
pathway and inhibit Tumor Necrosis Factor (TNF)-α-mediated 
Nuclear Factor (NF)-κB activation, demonstrating significant 
anti-inflammatory effects [42]. Critically, the reduction of these 
beneficial metabolites in the intestines of patients with IBD may 
exacerbate disease progression by promoting inflammation and 
damaging epithelial barrier function. Environmental factors such 
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as diet, smoking, medication use, and infections may also trigger 
or exacerbate IBD pathology by altering the gut microenvironment. 
A Western lifestyle, which is characterized by a high-calorie, high-
fat, low-fiber diet and lack of exercise, may increase the risk of 
developing IBD by adversely affecting the gut microbiota and 
mucosal barrier function [43].

MPNs

Definition

Generally, an MPN is a supramolecular framework material 
formed by the self-assembly of metal ions and polyphenolic 
compounds via coordination. Common polyphenolic compounds 
include catechins and Gallic Acid (GA) esters, which undergo 
spontaneous oxidation reactions to form quinone groups under 
aerobic and alkaline conditions. The quinone group contains two 
adjacent C=O bonds and at least one H atom that can be replaced 
by other functional groups. This unique structure enables the 
acquisition of other functional groups through addition or Schiff-
base reactions, thereby allowing polyphenolic compounds to obtain 
the associated functionalities [44].

Components and Assembly Methods

Composition: The components of an MPN include metal ions 
and phenolic ligands [45]. When an MPN is used to treat enteritis, 
the metal ions generate excess ROS while the phenolic ligands—
primarily polyphenolic substances that possess antioxidant 
capabilities—eliminate these ROS [46], thereby maintaining 
homeostasis in the intestinal microenvironment. Metal polyphenol 
network covers capsule [47], coating [48], hydrogel [49] and other 
forms.

Ions: The metal ions present in MPNs include those of iron, 
copper, zinc, and silver. Iron ions (Fe³⁺) participate in oxygen 
transport and energy metabolism; their homeostasis is crucial 
for maintaining intestinal health in terms of the microbiota 
composition and immune function [50]. An Fe³⁺–Tannic Acid (TA) 
film is the most common MPN coating material. The addition of 
Fe³⁺ to an MPN can enhance its antioxidant performance and 
effectively eliminate free radicals. The coordination bonds between 
Fe³⁺ and polyphenols break under the low pH and high adenosine 
triphosphate conditions in the tumor environment, releasing Fe³⁺ 
that reacts with extant hydrogen peroxide (H2O2) via the Fenton 
reaction to generate hydroxyl radicals (•OH), thereby inducing 
Immunogenic Cell Death (ICD) in tumor cells and releasing tumor 
antigens [51]. Furthermore, the bridging role played by Fe³⁺ during 
coordination enhances the lignin and plant tannin-based dual 
polymorphonuclear neutrophils developed through pH-controlled 
self-assembly to achieve high uniformity and controllable 
synthesis of the MPN. The addition of Fe³⁺ provides this lignin-
based neutrophil-derived material with efficient purification 
capabilities as well as magnetic responsiveness, facilitating the 
recovery and reuse of the MPN [52]. Furthermore, Fe³⁺ coordinates 

with polyphenols to enable the disintegration of FDEP NPs (Fe³⁺-
polyphenol-DOX-EGCG coordination nanoparticles), representing 
a multifunctional nanoplatform engineered through Fe³⁺-mediated 
coordination-driven self-assembly between polyphenolic ligands, 
which simultaneously encapsulates chemotherapeutic agent 
Doxorubicin (DOX) and the bioactive polyphenol Epigallocatechin 
Gallate (EGCG). Nanoparticles (NPs) release drugs in the acidic tumor 
environment, thereby achieving targeted controlled release. They 
can also enhance the ability of EGCG to inhibit CBR1, improving the 
anticancer effect of doxorubicin while reducing cardiotoxicity [53]. 
Interestingly, GA has been self-assembled with Fe³⁺ to form an MPN 
for hair dyeing, eliminating the irritating components of traditional 
hair dyes while reducing hair damage owing to the use of relatively 
non-toxic iron. A 21-d experiment conducted on mice verified the 
safety of this MPN-based hair dye, reporting no adverse reactions 
on mouse skin; blood tests indicated that the levels of inflammatory 
factors were normal with no impact on hair regeneration ability 
[54]. This demonstrates the excellent biocompatibility of MPN 
technology and provides a solid foundation for future applications. 
Finally, the MPN formed by Fe³⁺ and TA has been shown to endow 
hydrogel with photothermal antibacterial activity and enhance its 
mechanical strength, stability, and durability, making it suitable for 
treating skin wounds at joints [55].

Copper ions (Cu²⁺) are cofactors for various metabolic enzymes 
and participate in key biological processes such as cellular respiration 
and antioxidant defense [56]. They bind with polyphenol ligands 
(such as the phenolic group in polyethylene glycol-polyphenol-
chlorine(e6)) through metal–phenolic coordination bonds to form 
a stable MPN structure [57]. This coordination is fundamental for 
the successful assembly of an MPN. Furthermore, Cu²⁺ significantly 
enhances the antibacterial properties of MPN NPs against bacteria 
such as Methicillin-Resistant Staphylococcus Aureus (MRSA), even 
at low concentrations [58]. The use of Cu²⁺–EGCG MPN NPs was 
shown to accelerate wound healing by promoting cell proliferation 
and migration with excellent antibacterial properties and high 
biocompatibility; both in vivo and in vitro experiments confirmed 
these significant effects [59]. Notably, an MPN containing Cu²⁺ is 
easily degradable as the coordination bonds between the Cu²⁺ and 
polyphenols can be disrupted under acidic conditions. Experiments 
have shown that MPNs containing Cu²⁺ are more easily degraded 
in acidic environments or in the presence of metal chelators (such 
as sodium diethyl dithiocarbamate), where they can release any 
encapsulated substances [60]. Furthermore, the presence of Cu²⁺ 
can enhance the antioxidant effects of an MPN while improving its 
mechanical properties by forming a stable cross-linked structure 
that increases rigidity and strength. These ions also promote cell 
migration and angiogenesis and regulate the expression of the 
vascular endothelial growth factor and matrix metalloproteinases. 
Thus, they exhibit antibacterial and antioxidant properties to 
prevent infections, scavenge free radicals, and accelerate wound 
healing [61].
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Zinc ions (Zn2+) act as cofactors for enzymes and proteins that 
are crucial for processes including signal transduction and gene 
expression regulation and are vital for immune system function, 
antioxidant activity, growth and development, and neurological 
function [62]. They possess inherent antibacterial activity through 
various mechanisms, including disrupting the negative charge 
balance of bacterial membranes, affecting DNA replication, and 
reducing bacterial enzyme metabolism. These antibacterial effects 
can be enhanced by binding the MPN with Cellulose Acetate 
(CA) [63]. Shao prepared hollow nanohybrids using polyphenol-
coordinated zeolitic imidazolate framework 8 to realize precise 
pesticide release and effective inhibition of grey mold pathogens 
[64]. Notably, the coordination of Zn2+ with polyphenols endows an 
MPN with ROS responsiveness; EGCG/Zn capsules have been shown 
to accelerate the release of Zn2+ in the presence of H2O2, exhibiting 
the additional ability to effectively function in oxidative stress 
environments such as that present in ischemia [65]. The presence 
of Zn2+ in an MPN also enhances stability coordination, regulates the 
corrosion rate, improves biological functions, and synergistically 
exerts antibacterial effects to reduce inflammatory responses and 
thereby improve overall MPN performance [66]. In addition, Zn2+ 
can impart antiviral capabilities to an MPN; the combination of 
Zn2+ with polyphenolic flavonoid carriers (such as EGCG, quercetin, 
or taxifolin) significantly elevated intracellular zinc levels and 
markedly enhanced the inhibition of viral replication compared to 
the use of zinc alone. This mechanism is effective against various 
RNA viruses, suggesting broad prospects for antiviral applications, 
and may aid in the treatment of virus-induced enteritis [67].

Silver ions (Ag+) achieve broad-spectrum antibacterial effects 
by disrupting bacterial cell membrane permeability, inactivating 
proteins, and hindering DNA replication. However, their non-
selectivity may lead to cytotoxicity [68]. A pH-responsive silver-
loaded system was integrated into a hydrogel to precisely regulate 
the release of Ag+ in the acidic environment of acute infection 
wounds, realizing therapeutic effects while avoiding potential 
toxicity owing to sudden release [69]. The application of GA–
Ag+ NP sodium alginate hydrogels was shown to significantly 
accelerate the healing of MRSA-infected wounds in a rat skin defect 
model, achieving almost complete healing within 14 d. Indeed, 
Ag+ demonstrates excellent biocompatibility and accelerates 
the healing process through mechanisms that include reducing 
bacterial counts, decreasing the expression of inflammatory 
factors, and promoting angiogenesis to significantly lower IL-6 
and TNF-α expression [70]. Furthermore, Ag+ plays a key role in an 
antibacterial, antioxidant, and anti-inflammatory nanocomposite 
(called HPA) nanocomposites used in the early stages of wound 
healing; simultaneously, Ag+ regulates the inflammatory response 
by reducing the upregulation of pro-inflammatory cytokines, 
thereby alleviating the negative impact of excessive inflammation 
on tissue regeneration. This dual action mechanism provides HPA 
with significant therapeutic potential for use in burn wound healing 
[71].

Phenolic ligands: The polyphenols used in MPNs include TA, GA, 
dopamine, catechol, and EGCG. Simple phenolic ligands, such as TA, 
are commonly used to assemble MPNs [72]. When applied to treat 
nematode infections, the tannins in TA can reduce the degradation 
of rumen proteins, regulate rumen metabolism, decrease the 
gastrointestinal infection rate, and affect SCFA concentrations; 
this improvement in rumen environment can enhance the host’s 
resistance to stress [73]. A 0.15% tannin-coated MPN improved 
the daily weight gain and feed intake of weaned piglets, reduced 
the incidence of diarrhea, increased crude protein digestibility 
and digestive enzyme activity, improved intestinal structure and 
function, optimized gut microbiota, and enhanced butyrate and 
tryptophan metabolism [74]. Furthermore, the presence of TA 
alleviates glyphosate-induced oxidative stress by inhibiting the 
ROS/phosphatase and tensin homolog/PI3K/protein kinase B 
pathways and counteracting hepatocyte apoptosis, necrosis, and 
immune disorders to protect the liver, reflecting considerable 
potential in alleviating chemical cytotoxicity [75]. Finally, tannins 
also reduce digestibility and fermentation in the gastrointestinal 
tracts of pigs, which may reduce food intake [76]. Thus, tannins 
may enable patients with enteritis to achieve effects that previously 
required a reduction in food intake.

Most of the biological activity of GA, an organic acid with 
phenolic and carboxylic acid groups, is attributed to the former, 
which react with free radicals to form stable semiquinone radicals, 
thereby preventing free radical chain reactions and reducing 
oxidative damage. The presence of GA can increase the activity of 
antioxidant enzymes (such as superoxide dismutase, glutathione 
peroxidase, and catalase) while promoting the synthesis of non-
enzymatic antioxidants (such as glutathione), thereby enhancing 
cellular antioxidant defense [77]. Critically, the median lethal 
dose (LD50) of GA in mice was greater than 2000 mg/kg with no 
significant effects on hematological, histopathological, or behavioral 
parameters, confirming its safety [78]. Furthermore, GA can reduce 
the release of inflammatory cytokines, chemokines, and adhesion 
molecules while limiting cell infiltration by inhibiting the activation 
of the mitogen-activated protein kinase and NF-κB signaling 
pathways, thereby attenuating the inflammatory response. It also 
exerts anti-inflammatory effects by regulating the TLR4/MyD88/
TRIF domain-containing adaptor-inducing IFN-β signaling pathway 
[79]. Finally, GA prevents oxidative DNA damage which represents 
an essential aspect of enteritis treatment [80].

The presence of EGCG can inhibit inflammatory responses as 
well as inflammation-related enzyme activity to reduce the release 
of inflammatory mediators, including TNF-a and IL-6, that play 
key roles in the inflammatory response [81]. It also inhibits the 
signaling of NF-κB by increasing the expression of longevity factors 
such as Sirtuin 1 and Forkhead box O 3a, significantly reducing 
oxidative damage and inflammation [82]. Finally, EGCG alters the 
relative abundance of specific bacteria in the gut microbiota (e.g., 
increasing Bifidobacterium and Faecalibaculum while decreasing 
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Lactobacillus), affects the production of metabolic products (e.g., 
increasing prostaglandin E2), and regulates the gene expression of 
intestinal epithelial cells (e.g., restoring purine metabolism-related 
genes) [83].

Therefore, optimizing the selection and design of organic 
ligands, regulating the types and ratios of metal ions, and 
introducing functional modifications represent valuable strategies 
for designing easily functionalized MPNs. Yunlu et al. evaluated the 
use of polyphenol derivatives with specific biological activities, 
reporting that they not only retained the natural antioxidant and 
anti-inflammatory properties associated with polyphenols but may 
also enhance the molecular structures of specific functional ligands 
through chemical modifications, introduction, or optimization of 
functional groups for coordination with metal ions, and adjustment 
of the ligand molecular weight and spatial conformation to 
optimize MPN nanostructure and performance. Furthermore, the 
composition and performance of an MPN can be optimized by 
adjusting the ratios and concentrations of different metal ions, and 
ensuring a uniform distribution of metal ions in an MPN ensures 
that they exert the optimal synergistic effects. For example, the 
synergistic action of metal ions and polyphenol derivatives in 
NaGdF4: Nd@NaLuF4@polyethylene glycol‐polyphenol/Mn 
activates the stimulation of the IFN gene pathway in the tumor 
microenvironment, which can initiate a natural anti-tumor immune 
response that transforms “cold” tumors into “hot” tumors [84].

Functional modifications of MPNs: Xie et al. successfully 
applied a natural plant-derived Polyphenolic Compound Called 
Procyanidin (PCA) to modify the artificial surface of CA bone 
membranes using an innovative functional modification strategy 
[85]. They utilized the pre-coordination of PCA with metal ions such 
as Zn2+, Mg2+, and Cu2+ to form an MPN that was cleverly deposited 
onto the surface the membrane, endowing it with immune-
regulatory functions. The modified artificial bone membrane 
exhibited excellent stability and free-radical scavenging ability 
in physiological environments. In vitro and in vivo experiments 
further confirmed that this artificial bone membrane significantly 
improved the local immune microenvironment and effectively 
promoted the osteogenic differentiation of stem cells as well as 
the biological mineralization process, significantly accelerating 
the regeneration and repair of bone defects. In addition, MPNs can 
be combined with other substances to exert specifically designed 
effects. For example, coating MPNs with Alkaline Phosphatase 
(ALP) can hydrolyze monophosphate esters, including harmful 
components such as lipopolysaccharides in bacterial toxins, 
thereby playing a detoxifying role. Notably, the ALP produced by 
intestinal epithelial cells plays a major local and system-wide anti-
inflammatory role while maintaining intestinal homeostasis and 
directly participating in intestinal barrier function, which is critical 
for reducing harmful toxins in the gut and alleviating intestinal 
inflammation [86]. An MPN comprising a Ti–6Al–4V alloy coated 
with EGCG and Mg2+ significantly enhanced ALP activity in human 

adipose-derived stem cells cultured in vitro. In addition, the 
application of an MPN to the surface of polydopamine NPs forms an 
MPN@polydopamine composite that has exhibited enhanced anti-
inflammatory effects [87]. Arginine doping further promotes the 
release of anti-inflammatory components and enhances the overall 
anti-inflammatory capacity of an MPN, providing a new strategy 
for inflammation treatment [88]. Finally, Sun et al. designed a 
controllable-release MPN to provide macromolecular drug delivery 
using Pentagalloyl Glucose (PGG), an active ingredient in traditional 
Chinese medicine. PGG formed an MPN NP framework with Fe³⁺ 
and polyvinylpyrrolidone capable of encapsulating hyaluronidase 
(HAase). When this MPN was exposed to desferrioxamine, its 
disassembly promoted the release and activation of HAase, thereby 
degrading the extracellular matrices of tumor cells. Indeed, the 
inclusion of PGG significantly influenced the structure, enzyme 
activity regulation, responsiveness, and drug delivery of this MPN 
[89].

MPN Assembly Methods

Typically, MPNs can be assembled using two methods: Layer-
by-Layer (LBL) deposition or single-step co-deposition. The 
LBL deposition method assembles an MPN one layer at a time 
on a substrate surface by alternating polyphenol and metal ion 
solutions. The assembly of an MPN using LBL deposition requires 
the preparation of solutions, their placement on the substrate, and 
repeated deposition of metal ion and polyphenol layers, followed 
by post-treatment, characterization, and testing. The specific steps 
employed in LBL deposition must be adjusted according to the 
materials used and the intended application [90]. For example, an 
MPN based on EGCG and Mg²⁺ was generated by selecting and pre-
treating an AZ31 magnesium alloy substrate, preparing polyphenol 
and metal ion solutions, then repeatedly depositing layers through 
alternating immersion, washing, and drying steps before final curing; 
this was followed by a series of tests conducted to characterize the 
coating performance [91]. A simplified LBL deposition method was 
used to deposit CA coating on Escherichia coli Nissle 1917(EcN,) 
adsorb allylated gelatin, and finally undertake allyl modification 
before conducting light-induced thiol-ene crosslinking of gelatin 
to enhance the resistance of EcN to harsh gastrointestinal 
environments. Studies have shown that the oral administration of 
this coated EcN effectively alleviated colitis, reduced inflammation, 
repaired the intestinal barrier, cleared ROS, and restored microbial 
homeostasis in mice [92]. In contrast, the single-step co-deposition 
method involves the direct mixing of polyphenolic compounds 
with metal ion solutions to rapidly form an MPN by controlling the 
reaction conditions (such as pH, temperature, and concentration). 
Zhang et al. used the structural characteristics of tea polyphenols 
(such as EGCG) to develop a universal in situ single-step self-
assembly method. This method rapidly and sustainably synthesizes 
MPN NPs by mixing tea polyphenols, alcohol abstinence metabolites 
(such as diethyldithiocarbamate), and metal ions (such as Cu²⁺) 
in an aqueous phase under normal temperature and pressure 
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conditions [58].

In-depth research conducted on MPNs in recent years has 
developed several innovative assembly methods, such as the use 
of microbubble templates to prepare hollow MPN microcapsules 
in a single step. Liqin et al. used Bovine Serum Albumin (BSA) 
microbubbles as templates to form stable bubbles after heating 
and ultrasonic treatment. Mixing TA with metal ions (such as Fe³⁺) 
in the BSA bubble suspension reduced the stability of the bubbles 
owing to the complexation of TA with BSA and their competitive 
coordination with the metal ions, promoting air escape facilitated 
by the semi-permeability of the TA–metal ion shell layer. Notably, 
this process does not require the removal of the template as it 
directly generates hollow MPN microcapsules using a simple 
preparation process. This avoids the impact of template dissolution 
on the encapsulated substances, a common issue associated with 
conventional hard-template methods [93], offering superior 
efficiency and broader application prospects.

Critically, different assembly methods lead to significant 
differences in the structure and physicochemical properties of the 
resulting MPN, including permeability, hardness, and degradability. 
For example, thin-film structures were prepared from TA and 
Fe3+ using the LBL and single-step methods; although the raw 
materials used to prepare the MPNs were the same, significant 
differences were observed in their microstructures, distributions 
of metal ions, and physical and chemical properties. In particular, 
the single-step co-deposition method rapidly formed a uniform 
and stable network through the mixing of polyphenols and metal 
ions, representing a considerable improvement in efficiency over 
that of the LBL deposition method; however, the LBL deposition 
method allows for the adjustment of reaction conditions to control 
the thickness and morphology of the MPN to satisfy the application 
requirements. In addition, the network formed by the single-step 
co-deposition method has been shown to be highly stable and easy 
to functionalize [94].

Figure 2: Diverse assembly methods for Metal-phenolic networks. A. Components of metal polyphenol network. Reprinted 
with permission from Ref [45] B. Schematic diagram of the composition of metal polyphenol network capsules. Reprinted with 
permission from Ref [47] C.Schematic diagram of metal polyphenol network coating composition. Reprinted with permission 

from Ref [48] D. Schematic Diagram of Metal Polyphenol Network Hydrogel Composition. Reprinted with permission from Ref 
[49].
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The preparation of iron NPs containing tea extract using a 
single-step co-deposition method synchronously synthesized 
and removed heavy metals/metalloids from acidic mine drainage 
environments. The iron NPs synthesized using this method had a 
small particle size and large specific surface area but were prone 
to aggregation. Critically, the polyphenols and organic acids in 
the tea extract acted as complexing and reducing agents, which 
not only promoted the formation of iron NPs but also enhanced 
their surface adsorption capacity. This method is environmentally 
friendly, cost-effective, and easy to operate [95]. Furthermore, Fe³⁺–
TA cation films were fabricated in controlled thicknesses using LBL 
deposition and were shown to be extremely stable and insensitive to 
changes in ionic strength. These films were chemically stable at pH 
> 3 but dissolved rapidly upon contact with highly acidic solutions. 
At a pH of 5, electrostatic interactions within the films dominated 
over metal-coordination interactions and the TA experienced a shift 
in its acid dissociation constant. The film adsorption kinetics were 
fast and the film thickness increased linearly with the number of 
deposition cycles; a uniform particulate structure was consistently 
observed [96] (Figure 2).

Functional Characteristics of Mpns

Stability

The stability of MPNs protects in vivo drug activity, making 
these materials crucial for ensuring that delivered drugs do not lose 
efficacy in complex physiological environments; simultaneously, 
MPNs maintain the integrity of the delivery system to achieve the 
precise and controlled release of drugs over prolonged durations, 
thereby improving therapeutic safety. Notably, the presence of 
metal ions can affect the stability of a polyphenolic compound, and 
strong coordination between the two can form a more stable MPN 
structure. The stabilities of different MPNs have been confirmed 
through various multidimensional experiments. Chemical 
verification of the coordination effect using Fourier-transform 
infrared spectroscopy and ¹H nuclear magnetic resonance analysis 
indicated that TA stably binds with Pt²⁺. Furthermore, pH-sensitive 
drug release experiments have shown that the MPN is stable in 
physiological environments and can be controllably dissociated 
under acidic conditions, while viscosity analyses conducted 
under dilution conditions, evaluations of fluorescence quenching 
effects, and other tests demonstrated its colloidal stability and 
structural integrity. Finally, co-culture experiments conducted 
with BSA indicated that TA modification enhanced the anti-protein 
adsorption capacity of an MPN; thermogravimetric analyses and 
dynamic light scattering/transmission electron microscopy results 
further validated its thermodynamic and physical stability [97]. In 
summary, MPNs exhibit excellent stability in circulation.

Antibacterial Activity

The antibacterial activity associated with MPNs, which stems 
from both the polyphenolic compounds and metal ions within, 

are crucial aspects of enteritis treatment. Indeed, MPNs can 
effectively alleviate inflammation, inhibit the growth of harmful 
bacteria, protect beneficial bacteria, and restore the balance of 
intestinal microbiota. The significant antibacterial activities of TA 
make it a particularly critical component of an MPN, as it disrupts 
the stability of bacterial cell membranes, penetrates them, and 
inhibits enzymatic activity within. Research has shown that ROS 
are generated in multicomponent metal ion-containing aqueous 
solutions through electron transfer by enzymes [98], while the 
Fenton reaction forms the primary synergistic antibacterial 
mechanism; this combines the advantages of biocatalysis and 
chemical oxidation to effectively destroy bacterial cells and inhibit 
their growth and reproduction [99]. Critically, the antibacterial 
capabilities of MPNs do not contribute to the development of 
microbial resistance, making them promising candidates for new 
antibiotics.

Antioxidant Properties

The antioxidant properties of MPNs play critical roles in 
the treatment of enteritis. The excessive oxidative stress often 
present in the intestines during enteritis can damage intestinal 
cells and exacerbate inflammatory symptoms. An MPN with 
excellent antioxidant performance can scavenge free radicals to 
reduce oxidative stress and thereby protect intestinal cells from 
damage while promoting the resolution and repair of intestinal 
inflammation. The antioxidant effect of an MPN is primarily 
generated by the phenolic hydroxyl groups in its polyphenolic 
compounds, which donate hydrogen or electrons to react with 
and eliminate free radicals from the body. Notably, the phenolic 
hydroxyl groups in TA only partially coordinate with the metal 
ions to form the MPN structure; the remaining phenolic hydroxyl 
groups endow the MPN with its antioxidant capabilities. Indeed, 
free-radical scavenging experiments indicated that an MPN 
membrane significantly reduced the characteristic absorption 
peak of 2,2-diphenyl-1-picrylhydrazyl, confirming its antioxidant 
ability [100]. Furthermore, the antioxidant capacity of the MPN was 
stronger under acidic conditions and gradually weakened as the pH 
increased, making it well-suited for the treatment of enteritis.

Adsorption Properties

The adsorption properties of MPNs are necessary for the 
treatment of enteritis, as they facilitate the adsorption and 
elimination of harmful substances in the intestines, such as 
toxins and inflammatory factors. This reduces the burden on 
the intestines, promotes inflammation relief and recovery, and 
enhances treatment effectiveness. The adsorption capacity of an 
MPN primarily arises from the coordination between its metal ions 
and polyphenol molecules, which creates a stable supramolecular 
framework. For example, the MPN complex formed by TA and Fe³⁺ 
can serve as an efficient adsorption system that effectively removes 
heavy metal pollutants, such as lead and cadmium. Furthermore, 
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Guo et al. constructed an MPN utilizing the strong adhesive 
properties of natural polyphenols to capture and fix bee venom 
peptides, which are highly cytolytic toxins, within its network 
structure. This innovative method successfully transformed the 
peptides from potentially destructive “enemies” into usable “allies” 
by enabling their safe in vivo delivery [101].

pH Responsiveness

The pH responsiveness of an MPN is particularly valuable for 
enteritis treatment as patients often experience local pH changes in 
the intestine. In acidic environments where inflammation is present, 
the MPN releases its encapsulated drugs or active ingredients, 
directly acting on inflamed areas to enhance therapeutic effects, 
whereas in normal physiological pH environments where no 
inflammation is present, the drug release rate slows down, 
reducing the potential impact on normal tissues. This precise 
pH responsiveness allows the MPN to provide efficient and safe 
treatment of enteritis [102]. At a pH < 2, the MPN primarily exists 
in a monocomplex form, which is relatively unstable; as the pH 
increases to within 3–6, the bimetallic complex form of the MPN 
gradually dominates, and once it exceeds 7, the MPN primarily 
exhibits a stable trimetallic complex form.

For example, the Doxorubicin (DOX)-loaded Tannic acid 

(TA)-iron (Fe) network (for short, TAF) nanocomposite achieves 
treatment through iron-enhanced ICD by dissociating in the acidic 
tumor microenvironment to release Fe³⁺ and trigger the Fenton 
reaction, which generates cytotoxic hydroxyl radicals that induce 
iron death in cancer cells [103]. Simultaneously, the triggering 
of ICD activates the body’s immune response. The stability of the 
MPN ensures the controlled release of chemotherapeutic drugs and 
Fe³⁺ as well as the long-term effectiveness of the nanocomposite in 
vivo, thereby improving treatment efficiency. Thus, MPN stability 
ensures effective drug delivery, enhances treatment efficiency, and 
ensures biological safety.

Furthermore, Jiang et al. utilized MPNs to coat magnetic 
hydroxyapatite and thereby realize pH-activated Magnetic 
Resonance Imaging (MRI) to locate tumors or other lesions more 
accurately [104]. This MPN-coated magnetic hydroxyapatite can also 
control the delivery and release of drugs through the dissociation of 
the MPN and degradation of the magnetic hydroxyapatite. Critically, 
the magnetic responsiveness of the magnetic hydroxyapatite can 
also be regulated by an external magnetic field, allowing for remote 
control and precise localization of drug application. This functional 
characteristic can be exploited to clearly identify the locations of 
lesions and precisely treat them through external interventions 
(Figure 3).

Figure 3: The pH-responsive properties of MPNs A. Schematic illustration of selective sterilization leveraging the pH-responsive 
properties of MPNs. Reprinted with permission from Ref [102] B. Synergistic integration of pH-responsive MPNs with MR 

imaging for precision-guided tumor therapy. Reprinted with permission from Ref [103].
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Biocompatibility

Finally, the biocompatibility of an MPN is crucial for the 
successful treatment of enteritis as it ensures that the material 
does not cause adverse reactions in the body, such as immune 
or toxic responses, facilitating safe and effective interaction 
with biological tissues while exerting the desired therapeutic 
effects. A comprehensive assessment using the Cell Counting 
Kit-8 cell proliferation assay and Calcein acetyl methoxy methyl 
ester/propium iodide staining method found that EGCG and 
Cu2⁺-complexed nanosheets exhibited no significant toxicity to 

RAW264.7 macrophages at concentrations below 100 μg/mL, 
with normal cell proliferation, high activity, and low mortality; in 
contrast, CuCl₂ exhibited obvious cytotoxicity [105]. This result 
strongly demonstrates the excellent biocompatibility of Cu-EGCG 
nanosheets.

In summary, the various functional characteristics of an MPN 
are inseparable and interrelated, collectively constituting the 
unique advantages of MPN use in biomedical applications (Figure 
4).

Figure 4:  Evaluating the biocompatibility of MPNs A. The biocompatibility of MPNs. Reprinted with permission from Ref [92] B. 
The cytotoxicity and therapeutic mechanisms of MPNs in IBD treatment. Reprinted with permission from Ref [106].
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Applications of MPNs in Enteritis Treatment

Advantages of MPNs

Targeted Therapy: The abilities of multifunctional Penta-
Peptide Functionalized Polyphenol-Copper Nanoparticle Network 
with Enhanced Mitochondrial Targeting and Inhibition of Pyroptosis 
(PG@Cu–FP)MPN NPs have been validated in cellular and animal 
experiments. At the cellular level, the inherent characteristics 
of the FP peptide and the charge gradient of the mitochondrial 
membrane enable PG@Cu–FP to target mitochondria through 
electrostatic adsorption, and Penta-Peptide (FP) co-localization 
with mitochondria has a high Pearson coefficient, resulting in 
excellent accumulation; simultaneously, Cu²⁺ modification triggers 
the “proton sponge effect,” facilitating the escape of particles from 
lysosomes and reducing co-localization [107].

Regulation Of Gut Microbiota: The MPN formed by 
crosslinking the Fe3+–TA network with carboxymethylated β-glucan 

(EcN@Fe-TA@mGN) can be used to increase the abundance of 
beneficial gut bacteria, such as Bacteroidetes, while reducing the 
abundance of harmful bacteria, such as Proteobacteria, Escherichia 
coli, and Shigella. This promotes the colonization of probiotics in 
the gut, improves the diversity of gut microbes, and regulates the 
production of SCFAs, particularly butyrate, to effectively manage 
the gut microbiome, maintain gut health, and alleviate intestinal 
inflammation [108]. Mao et.al introduce a molecular coating made 
of o-nitrobenzaldehyde-modified gelatin (GelNB) that binds to 
intestinal -NH2 groups, forming a protective biophysical barrier. 
This coating adheres persistently to the intestinal surface, shielding 
damaged epithelium from harmful metabolites and pathogens. 
It promotes intestinal repair by enhancing cell migration/
proliferation and reducing inflammation, outperforming the 
clinical drug mesalazine in vivo. GelNB demonstrates significant 
potential as a therapeutic strategy for preventing and treating IBD 
[109] (Figure 5).

Figure 5:  MPNs modulate gut microbiota A. GelNB molecular coating as a biophysical barrier to isolate intestinal irritating 
metabolites and regulate intestinal microbial homeostasis in the treatment of inflammatory bowel disease. Reprinted with 

permission from Ref [109] B. MPNs mediated modulation of the intratumoral microbiota. Reprinted with permission from Ref 
[110].

Protecting and Repairing the Intestinal Mucosa: The 
antioxidant properties of the polyphenols in an MPN can reduce 
oxidative stress-induced damage to the intestinal mucosa and 
the antibacterial properties of these polyphenols can inhibit the 
growth of harmful bacteria, collectively maintaining the health of 

the intestinal mucosa [111]. Additionally, the presence of metal 
ions such as Mg²⁺ and Zn²⁺ in an MPN can promote mucosal 
repair as they perform various critical functions in the body, 
including participation in cellular metabolism, promotion of cell 
proliferation and differentiation, and enhancement of tissue repair 
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and regeneration. During the mucosal repair process, these ions 
stimulate the expression of cell growth factors, thereby promoting 
the repair and regeneration of damaged cells and accelerating 
the healing of the mucosa. Studies have shown that high-purity 
magnesium has a positive effect on the expression of the tight 
junction proteins in intestinal epithelial cells both in vitro and in vivo, 

possibly enhancing intestinal barrier function [112]. Furthermore, 
composite zinc–rutin particles have been shown to protect the 
intestinal epithelial barrier through their anti-inflammatory and 
antioxidant effects, alleviating the symptoms of acute and chronic 
colitis induced by DSS [113] (Figure 6).

Figure 6: MPNs protect and repair intestinal mucosa A. The formation of metal-phenolic networks on the colon tissue of normal 
and colitis mice and there in vivo imaging. Reprinted with permission from Ref [114] B. Application of metal polyphenol network 

in colitis. Reprinted with permission from Ref [115].

Inhibiting the Release of Inflammatory Factors and 
Reducing Inflammation: The anti-inflammatory properties of 
MPNs can inhibit the production and release of inflammatory 

factors, thereby reducing inflammatory responses. Copper 
nanoenzymes induced by charge transfer from phenolic ligands 
to metals can scavenge ROS, suggesting potential applications in 
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chronic wound healing. Metal–polyphenol networks [11] were 
shown to utilize the synergistic effects of enzyme-like activity and 
photothermal properties to effectively eliminate oral polymicrobial 
biofilm-related infections. The NP network demonstrated a 
significant ability to inhibit the release of inflammatory factors, 
alleviating inflammation caused by infections [10] (Figure 7).

Safety: MPNs has exhibited excellent safety in thrombolytic 

drug delivery systems. Tao et al. effectively inhibited the direct 
contact of thrombolytic urokinase-type plasminogen activator 
(uPA) with the environment by coating the surfaces of lipid cubic 
phases with MPNs containing low-fouling peptides, thereby 
reducing nonspecific cell association while extending the circulation 
half-life and decreasing the accumulation of uPA in mouse spleens 
[118]. These results highlight the safety of MPNs as drug carriers 
(Figure 8).

Figure 7: MPNs Inhibit the release of inflammatory factors and reducing inflammation A. Anti-inflammatory and antioxidant 
effects of metal polyphenol network. Reprinted with permission from Ref [116] B. The anti-inflammatory effect of metal 

polyphenol network and its treatment of skin wounds. Reprinted with permission from Ref [117].
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Figure 8: Safety of MPNs A. Safety of MPNs. Reprinted with permission from Ref [119] B. MPNs shows safety in wound healing. 
Reprinted with permission from Ref [120].

Application of MPNs for the Treatment of Enteritis

Sun et al. used Cu2+, and TA to prepare phycocyanin-encapsulated 
Phycocyanin-Encapsulated Zeolitic Imidazolate Framework-8 with 
Tannic Acid Coordination Shell, Disulfide Bonds, and Hyaluronic 
Acid (PZTC/SS/HA) nanocapsules designed to rupture in the 
acidic tumor microenvironment through the action of glutathione 
and disulfide bonds, releasing phycocyanin and Cu2+. The released 
Cu2+ reacts with hydrogen sulfide to efficiently generate CuS 
nanoparticles for photothermal therapy. This photothermal 
therapy activates chemokinetic therapy, thereby enhancing the 
therapeutic effects of the MPN. Both in vitro and in vivo experiments 
demonstrated that this nanocapsule exhibited significant toxicity 

against colorectal cancer cells, low toxicity to normal cells, excellent 
tumor suppression, and suitable biocompatibility in mouse models 
[121].

Lu synthesized a novel nanoparticle comprising BSA NPs 
encapsulating TNF-α small-interfering RNA and GA-mediated 
graphene quantum dots. The functionality of these NPs was 
enhanced by constructing a layer of polyphenol armor comprising 
chitosan and TA through LBL deposition. This armor not only 
protects the NPs as they traverse the gastrointestinal tract but 
also imparts bioadhesive and antioxidant properties. The NPs 
significantly reduced intestinal inflammation and improved 
anxiety, depression, and cognitive behavior in a colitis mouse 
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model while demonstrating excellent stability and targeting. This 
polyphenol armor strategy was based on the coordination effect 
observed between polyphenols and metal ions and can be seen 
as an innovative application of MPNs in the treatment of enteritis 
[122].

Li et al. constructed a novel and efficient MPN-based drug 
delivery system through the precise coordination of EGCG and 
Fe3+ to successfully incorporate curcumin medication. These 
curcumin MPNs were further encapsulated in yeast microcapsules 
to deliver the drug more accurately. Experimental results revealed 
that oral administration of the resulting microcapsules effectively 
eliminated ROS, reduced the levels of inflammatory factors, 
and regulated macrophage function [123], thereby significantly 
alleviating the symptoms of colitis while protecting and restoring 
normal intestinal function. This research provides a new approach 
for the treatment of enteritis and fully demonstrates the enormous 
potential of MPNs in the medical field, suggesting new avenues 
for the treatment of related diseases with far-reaching clinical 
significance. Similarly, Jin et al. utilized metal ions (such as Fe³⁺) 
and polyphenols (such as TA) to construct curcumin-encapsulating 
MPN NPs. Experimental results indicated that these NPs not only 
improved the solubility and stability of the curcumin and enhanced 
the drug release behavior but also possessed excellent stability 
and biocompatibility. Furthermore, the NPs facilitated pathological 
improvements in the gastrointestinal tract of a colitis mouse model 
through their anti-inflammatory and antioxidant effects [106].

Fang combined MPN technology with light-induced thiol-ene 
click chemistry to coat and reinforce individual probiotic cells. 
This treatment protected the probiotic cells while endowing them 
with new functions, resulting in excellent stability and viability in 
simulated oral and intestinal environments. The treated probiotic 
cells performed exceptionally well in resisting gastric acid, bile, and 
other digestive fluid erosion, successfully reaching the intestines 
to exert the desired therapeutic effect. When used to treat 
enteritis these probiotic cells can regulate the balance of intestinal 
microbiota by inhibiting harmful bacteria while promoting 
beneficial bacteria and alleviating intestinal inflammation to relieve 
symptoms [92]. Notably, this research injected new vitality into oral 
probiotic therapy by providing a novel approach for the treatment 
of intestinal diseases, including enteritis.

The effective treatment of UC has been realized by loading 
MPN yeast microcapsules with nobiletin. These microcapsules 
were experimentally shown to precisely regulate oxidative stress 
responses in patients with UC by inhibiting excessive activation of 
the NLRP3 inflammasome and balancing immune responses. The 
meticulous design of the microcapsules successfully enhanced the 
bioavailability of the nobiletin within, allowing for stable release 
in the intestines to act directly on inflamed areas. The application 
of these microcapsules to UC animal models significantly reduced 
intestinal inflammation and improved the integrity of the intestinal 
mucosa, further validating their efficacy for UC treatment. This 
research offers new treatment avenues for patients with UC and 

demonstrates the enormous potential of MPN yeast microcapsules 
as a drug delivery system for the treatment of IBD [124].

Fu et al. utilized a hydrogen peroxide enzyme to catalyze the 
formation of a stable Fe³⁺–TA coating and explored its potential 
in treating UC. In vitro experiments showed that the coating 
formed rapidly and stably on the small intestinal mucosa, and in 
vivo experiments validated its durability and protective effect on 
the intestinal barrier in mouse and pig models. When applied in 
colitis mice models, the coating significantly improved weight loss, 
intestinal morphology, and inflammation levels, and the results 
of MRI analyses confirmed its stability and imageability under 
pathological conditions, providing new strategies for the diagnosis 
and treatment of enteritis [125].

Finally, novel Zn2+–TA MPN NPs have been developed for 
the treatment of IBD. These NPs alleviate oxidative stress and 
inflammation by scavenging reactive oxygen and nitrogen species 
to effectively promote intestinal mucosal repair; both in vitro and 
in vivo experiments confirmed their biocompatibility and safety. 
Indeed, they significantly reduced intestinal inflammation, restored 
colon length, and decreased weight loss and splenomegaly in DSS-
induced enteritis mouse models [126], thereby suggesting a new 
and effective strategy for the treatment of IBD (Figure 9).

Combined Diagnosis and Treatment Using MPNs

An MPN formed by coordinating TA and metal ions was coated 
on the surfaces of Aggregation-Induced Emission (AIE) NPs to 
create an organic–inorganic composite core–shell nanostructure 
for in vivo imaging and diagnosis. This method combines the 
fluorescent properties of AIE molecules with the multifunctional 
characteristics of the MPN to achieve multimodal imaging in 
biological systems using technologies such as MRI [127], computed 
tomography, and Fluorescence Imaging (FI). Indeed, this approach 
was shown to facilitate dual-mode MRI and FI in A549 tumor-
bearing mouse models. Notably, the various imaging modalities 
facilitated by the multifunctional characteristics of the shell–
core structure can inform a more comprehensive diagnosis of 
enteritis and evaluation of its treatment. Furthermore, catalase-
catalyzed oxidation polymerization of TA and chelation with Fe³⁺ 
to form an MPN structure significantly accelerated the oxidation 
polymerization rate of TA, with the addition of Fe³⁺ enhancing the 
formation and stability of the network. The resulting MPN formed 
rapidly on the intestinal mucosa, exhibiting excellent adhesion that 
retained it in the intestine for at least 12 h. This ability significantly 
reduced the required serum concentration of flourescein isiocynate-
dextran and improved glucose tolerance. When applied to enteritis 
mice models, this MPN reduced weight loss, increased the length of 
the small intestine, significantly decreased intestinal permeability, 
and alleviated the degree of inflammation in the coated treatment 
group. Critically, the high longitudinal relaxation rate of Fe³⁺ was 
utilized to achieve real-time MRI-based monitoring of intestinal 
barrier damage in enteritis mice, representing a novel method for 
the visual monitoring of intestinal barrier damage [125].



Am J Biomed Sci & Res

American Journal of Biomedical Science & Research

Copyright© Weifang Liao

131

Figure 9: MPN IBD mechanisms & therapeutic outcomes A. Reprinted with permission from Ref [123] B. Reprinted with 
permission from Ref [124].

Summary of Prospective MPN Applications in 
Enteritis Treatment

The studies included in this review indicate that MPNs exhibit 
considerable potential for use in the treatment of enteritis. The 
unique pH responsiveness of the MPN facilitates precise drug 
release in the acidic environment of the intestine to realize targeted 
therapy, and the MPN positively influences host energy metabolism 
by protecting anaerobic bacteria and regulating the gut microbiota. 
The synergistic effect of the polyphenols and metal ions within an 
MPN protects the intestinal mucosa from oxidative stress damage 
while promoting mucosal repair and accelerating the healing 
process. The anti-inflammatory effects of polyphenols further 

inhibit the release of inflammatory factors, thereby fundamentally 
reducing inflammatory responses. Notably, MPNs demonstrate 
excellent safety and biocompatibility when used as drug delivery 
carriers, prolonging the drug circulation half-life and reducing side 
effects. Thus, the ability of the MPN to provide precisely targeted 
therapy, regulate gut microbiota, protect and repair the intestinal 
mucosa, and effectively reduce inflammation suggests a novel 
approach for the treatment of enteritis; MPNs are expected to 
become a focus of considerable future clinical research.

Although MPNs have demonstrated numerous advantages in 
the treatment of enteritis, every treatment method or material is 
inevitably subject to limitations. First, the process of preparing an 
MPN is relatively complex, requiring precise control over the ratio 
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of metal ions to polyphenolic compounds as well as the reaction 
conditions. This increases the technical difficulty and cost of 
production, which may limit the widespread application of MPNs 
for enteritis treatment, especially in economically constrained 
regions or patient populations. Furthermore, MPN stability is a 
key challenge hindering widespread application. Although an MPN 
can be constructed to disintegrate and release drugs under specific 
pH conditions, the complexity of the intestinal environment and 
differences among patients may harm its stability and effectiveness, 
adversely affecting treatment outcomes. Despite the excellent 
biocompatibility and safety of the MPNs reported in preliminary 
studies, their long-term safety and potential risks in application 
are not yet fully understood; further in-depth research is required 
to determine the degradation products of MPNs in the intestines, 
their interactions with the gut microbiome, and their effects on host 
physiological functions. Additionally, potential risks associated 
with the long-term use of an MPN, such as the development 
of drug resistance or drug accumulation effects, cannot be 
overlooked. Finally, the application of novel MPNs in the treatment 
of enteritis necessitates strict regulation and standardization 
of material preparation, quality control, safety assessment, and 
clinical application guidelines that require further research and 
formulation to complete.

In summary, while applications of MPNs in enteritis treatment 
hold considerable promise, they also face challenges related to 
preparation complexity, stability, differences among patients, safety, 
and long-term effects, and further development of regulations and 
standards is required. Future research should focus on addressing 
these issues to promote widespread application and in-depth 
development of MPNs for the treatment of enteritis.
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