ISSN: 2642-1747

#### Mini Review

Copyright<sup>©</sup> Stefan Bittmann

# Chylomicronemia as a Rare Cause of Severe Hypertriglyceridemia in Children

### Stefan Bittmann<sup>1,2</sup>, Elisabeth Luchter<sup>1</sup>, Elena Moschüring Alieva<sup>1</sup>

<sup>1</sup>Department of Pediatrics, Ped Mind Institute, Department of Pediatrics, Hindenburgring 4, D-48599 Gronau, Germany

\*Corresponding author: Stefan Bittmann, Department of Pediatrics, Ped Mind Institute, Department of Pediatrics, Hindenburgring 4, D-48599 Gronau, Germany and Honorary Professor (Hon.Prof.), School of Medicine, Shangluo Vocational and Technical College, Shangluo, 726000, Shaanxi, China.

To Cite This Article: Stefan Bittmann\*, Chylomicronemia as a Rare Cause of Severe Hypertriglyceridemia in Children. Am J Biomed Sci & Res. 2025 29(2) AJBSR.MS.ID.003774, DOI: 10.34297/AJBSR.2025.29.003774

Received: 

Movember 10, 2025; Published: 

November 19, 2025

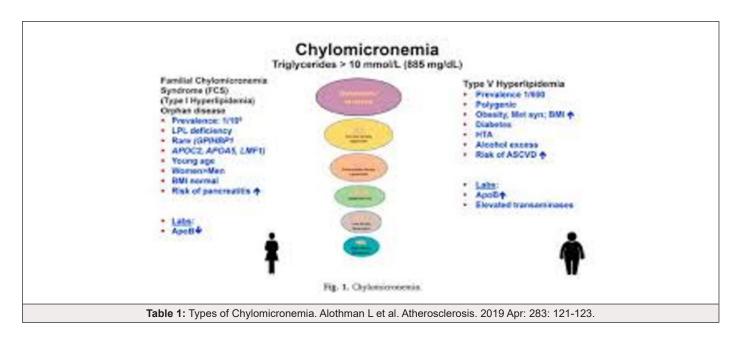
## Abstract

There are two forms of chylomicronemia, monogenic familial chylomicronemia syndrome and polygenic multifactorial chylomicronemia syndrome. Familial chylomicronemia syndrome is a rare, autosomal recessive disorder of chylomicron metabolism characterized by extremely high serum concentrations of triglycerides. An important role is played by the hepatic enzyme Lipoprotein Lipase (LPL), which is involved in the breakdown of triglyceride-rich lipoproteins. Pathogenic variants in the LPL gene are causative for FCS. Additionally, LPL deficiency can also be caused by pathogenic variants in the APOC2 gene. Variants in the GPIHBP1 gene and the LMF1 gene have also been described. On the other hand, multifactorial chylomicronemia syndrome is a polygenic disease primarily found in adults and a late-onset form. A pan-elevation of TG-rich lipoproteins and elevated chylomicrons, VLDL and degressed HDL are present. Diagnosis is made by DNA sequencing and lipid electrophoresis. Lifetime pancreatitis risk differs between both types of 20-90%. Cardiovascular disease risk ranges between 5-40%. FCS is refractory to conventional therapies due to compromise of lipolytic reserve, whereas in MCS more responsiveness is found to drug therapy then FCS. Pediatricians should be aware of chylomicronemia in severe cases of hypertriglyceridemia in children.

Keywords: Chylomicronemia, Children, Hypertriglyceridemia, Treatment

#### Introduction

The Chylomicronemia Syndrome is characterized by severe hypertriglyceridemia (triglycerides in the blood >16.95 mmol/L or >1500mg/dL // >10 mmol/L or >885mg/dL) and clinical symptoms such as abdominal pain, acute inflammation of the pancreas, and eruptive xanthomas. Fats serve as an important source of energy, building blocks of cell walls, and components of hormones in the body. During digestion, fats are absorbed in the form of triglycerides in the small intestine and transported as fat


molecules, called chylomicrons. In the further metabolism of these fat molecules, triglycerides are broken down by an enzyme called Lipoprotein Lipase (LPL). If there is inadequate breakdown or insufficient storage of triglycerides, the levels in the blood increase. There are two main forms of Chylomicronemia Syndrome: the more common Multifactorial Chylomicronemia Syndrome (MFCS) and the rare familial Chylomicronemia Syndrome (FCS). Multifactorial Chylomicronemia Syndrome in about one in



<sup>&</sup>lt;sup>2</sup>Honorary Professor (Hon.Prof.), School of Medicine, Shangluo Vocational and Technical College, Shangluo, 726000, Shaanxi, China

600 individuals. It involves a predisposition from a collection of minor genetic variants that, in combination with lifestyle factors, comorbidities, or medications, can lead to an increase in fat levels. Non-genetic, or secondary factors that can contribute to an increase in triglycerides in the context of MFCS include alcohol consumption, obesity, undiagnosed or inadequately treated diabetes mellitus, as well as the use of medications such as estrogens, diuretics, and beta-blockers. However, there are many other medications that can interact with genetic forms of hypertriglyceridemia and lead to MFCS. Familial Chylomicronemia Syndrome (FCS) is a rare genetic disorder that occurs early and in about one in a million people. It is characterized by a deficiency or dysfunction of the enzyme Lipoprotein Lipase (LPL) and some associated proteins, leading

to impaired breakdown of triglyceride-rich lipoproteins. Severe hypertriglyceridemia can cause recurrent abdominal pain and is the third most common cause of acute pancreatitis after alcohol and gallstones. Recurrent pancreatitis can lead to pancreatic dysfunction and the development of digestive problems and diabetes mellitus. Other symptoms include nausea, vomiting, fat deposits in the eye (lipemia retinalis) and skin (eruptive xanthomas), joint pain, as well as hepatosplenomegaly. Cognitive impairments or psychiatric disorders such as anxiety and depression may also occur. Initially, multiple triglyceride measurements are taken from the blood. A visible milky, fatty deposit may form during blood collection. The disease is diagnosed through a genetic examination of the blood.



The goal of treating Chylomicronemia Syndrome is to lower triglycerides in the blood, particularly to prevent potentially lifethreatening acute pancreatitis. A low-fat and low-sugar diet is generally recommended, as well as avoiding alcohol. Physical activity can positively influence triglyceride levels. For MFCS, it is important to identify and treat identifiable causes of secondary hypertriglyceridemia and replace medications if necessary. This form of hypertriglyceridemia also responds well to treatment with fibrates, statins, and omega-3 fatty acids, which can usually sufficiently reduce the risk of pancreatitis. Many patients with MFCS have multiple gene mutations that cause not only hypertriglyceridemia but also other cardiovascular risk factors such as diabetes mellitus and hypertension, which also play a significant role in treatment. Due to the impaired breakdown of lipoproteins, it is particularly important to limit their intake through diet. In healthy individuals, about 30% of daily energy intake should come from fats. Patients with FCS are recommended to reduce fats to 10-15% and consume medium-chain triglycerides

(e.g., in butter, coconut oil) in favor of increased calorie intake from carbohydrates. However, these should be complex carbohydrates and preferably not sugars. The lipid-lowering drug therapy with fibrates or statins, commonly used in the treatment of elevated triglycerides, is not sufficiently effective in patients with FCS. Volanesorsen, an antisense oligonucleotide, is used instead. It reduces the production of a protein, apolipoprotein CIII (ApoC-III), which inhibits the breakdown of lipoproteins in the cell, thereby reducing blood triglycerides by up to 77%. The medication is administered weekly as an injection. Side effects may include local skin reactions at the injection site and a decrease in platelets, which should be monitored during therapy.

## Discussion

The two major goals of the treatment of hypertriglyceridemia are the prevention of cardiovascular disease and pancreatitis) [1-41]. Here we discuss the drugs used for the treatment of hypertriglyceridemia: (niacin, fibrates, omega-3-fatty acids, and

apo CIII inhibitors. Niacin decreases total cholesterol, TGs (20-50% decrease), LDL-C, and Lp(a) [2,7,12]. Additionally, niacin decreases small dense LDL resulting in a shift to large, buoyant LDL particles. Moreover, niacin increases HDL-C. Skin flushing, insulin resistance, and other side effects have limited the use of niacin. The enthusiasm for niacin has greatly decreased with the failure of AIM-HIGH and HPS-2 Thrive to decrease cardiovascular events when niacin was added to statin therapy. The omega-3-fatty acids eicosapentaenoic acid (C20:5n-3) (EPA) and docosahexaenoic acid (C22:6n-3) (DHA) lower TGs by 10-50% but do not affect total cholesterol, HDL-C, or Lp(a). LDL-C may increase with EPA + DHA when the TG levels are markedly elevated (>500mg/dL). EPA alone does not increase LDL-C. Omega-3-fatty acids have few side effects, drug interactions, or contraindications. Numerous studies of low dose omega-3-fatty acids on cardiovascular outcomes have failed to demonstrate a benefit. However, in the JELIS, REDUCE-IT, and RESPECT-EPA trials high doses of EPA alone reduced cardiovascular events while in the STRENGTH and OMEMI trials high doses of EPA+DHA did not reduce cardiovascular events. Fibrates reduce TG levels by 25-50% and increase HDL-C by 5-20%. The effect on LDL-C is variable. If the TG levels are very high (>500mg/dL), fibrate therapy may result in an increase in LDL-C, whereas if TGs are not markedly elevated fibrates decrease LDL-C by 10-30%. Fibrates also reduce apolipoprotein B, LDL particle number, and non-HDL-C and there may be a shift from small dense LDL towards large LDL particles. Fibrates do not have any major effects on Lp(a). Monotherapy with fibrates appears to reduce cardiovascular events particularly in patients with high TG and low HDL-C levels. In contrast, in the ACCORD LIPID and PROMINENT trials the addition of fibrates to statin therapy did not reduce cardiovascular disease, which has reduced the enthusiasm for using fibrates to reduce cardiovascular disease. In patients with diabetes fibrates appear to slow the progression of microvascular disease (retinopathy, nephropathy, and amputations, ulcers, and gangrene. Antisense oligonucleotides, volanesorsen and olezarsen, inhibit the production of apolipoprotein C-III and decrease TG levels in patients with severe hypertriglyceridemia including patients with the Familial Chylomicronemia Syndrome (FCS). Studies also suggest that apo CIII inhibitors reduce episodes of pancreatitis in patients with severe hypertriglyceridemia. Patients with FCS have also reported that apo C-III inhibitors improved symptoms and reduced interference of FCS with work/school responsibilities. Of concern has been decreases in platelet levels with 47% of patients treated with volunesorsen developing platelet counts below100 x 109/L, a side effect that is not observed with olezarsen. Thus, a number of drugs are available for the treatment of hypertriglyceridemia and may be employed when lifestyle changes are not sufficient. Familial Chylomicronemia Syndrome (FCS) is a rare inherited disease, mainly due to Lipoprotein Lipase (LPL) gene mutations, leading to lipid abnormalities. Volanesorsen, a second-generation 2'-0-methoxyethyl (2'-MOE) chimeric antisense therapeutic oligonucleotide, can decrease plasma apolipoprotein C3 and triglycerides (TG) levels through

LPL-independent pathways. The European Medicines Agency has approved volanesorsen as an adjunct to diet in adult FCS patients with an inadequate response to TG-lowering therapy. Areas covered: Available clinical data on volanesorsen efficacy and safety are presented. Furthermore, we discuss the yearly treatment with volanesorsen of a 21-year-old female FCS patient with LPL mutation. Volanesorsen was well-tolerated and decreased patient's TG levels (from >5000 mg/dL (56 mmol/L) to 350-500 mg/dL (4-5.6 mmol/L)) at 12 months. Lipoprotein Apheresis (LA) was stopped and there were no episodes of pancreatitis or abdominal pain. Expert opinion: Severe hypertriglyceridemia can potentially be fatal. Until recently, there was no specific treatment for FCS, apart from hypotriglyceridemic diet, fibrates, omega-3 fatty acids, and LA sessions [21,33]. Therefore, volanesorsen represents a promising therapeutic solution for these patients. The main side effect of volanesorsen therapy is thrombocytopenia, which should be monitored and treated accordingly. Increasing evidence will further elucidate the clinical implications of volanesorsen use in daily practice. Volanesorsen, an ASO targeting APOC3, has shown effectiveness in managing FCS, multifactorial chylomicronemia, and familial partial lipodystrophy, but its use is limited by thrombocytopenia. Emerging therapies, Olezarsen (ASO anti-APOC3) and Plozasiran (siRNA anti-APOC3), both conjugated with GalNAc, show promise in reducing acute pancreatitis risk without platelet concerns. ANGPTL3 inhibition requires residual lipoprotein lipase (LPL) activity, with only siRNA-based therapieszodasiran and solbinsiran-under investigation. Suppressing APOC3 expression and targeting ANGPTL3 via siRNA offer significant potential, but long-term studies are needed to confirm their efficacy and safety. Future research may explore gene-editing strategies using lipid nanoparticle-based CRISPR-Cas9 delivery for more durable treatment outcomes [24,28,33]. Olezarsen is an antisense oligonucleotide targeting APOC3 mRNA, a key regulator of plasma triglyceride levels. It has been shown to significantly reduce triglyceride levels via APOC3 protein degradation. Clinical trials have demonstrated substantial reductions in triglyceride levels and APOC3, with minimal adverse events. Phase 2 and 3 trials showed consistent efficacy and safety profiles, with common adverse events including COVID-19 infection, abdominal pain, and diarrhoea. Relevance to Patient Care and Clinical Practice in Comparison to Existing Drugs: Olezarsen offers a targeted and effective treatment for FCS, addressing limitations of traditional therapies such as fibrates, omega-3 fatty acids, and statins. Its novel mechanism of action and once-monthly dosing regimen may improve patient adherence, providing significant advancement in FCS management.

### **Acknowledgement**

None.

#### **Conflict of Interest**

None.

#### References

- D'Erasmo L, Tramontano D, Di Costanzo A, Casula M, Galimberti F, et al. (2025) Contemporary Management of Familial and Multifactorial Chylomicronemia Syndromes in Italy: Insights From the National Lipigen Registry. Arterioscler Thromb Vasc Biol.
- Feingold KR (2025) Triglyceride Lowering Drugs. In: Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, Muzumdar R, Purnell J, Rey R, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.2000.
- Mueller PA, Rosario S, Hay J, Bergstrom P, Pacheco Velázquez SC, et al. (2025) Characterization of familial chylomicronemia syndrome in a compound heterozygote for 2 APOA5 nonsense variants. J Clin Lipidol 19(4): 1091-1100.
- Ousey J, Jomphe C, Ta A, Gosselin NH, Shi J (2025) Population Pharmacokinetic Modeling of Subcutaneous Plozasiran in Healthy Volunteers and Patients with Familial Chylomicronemia Syndrome, Severe Hypertriglyceridemia, and Mixed Hyperlipidemia. J Clin Pharmacol 65(11): 1485-1496.
- Javed F, Hegele RA, Garg A, Patni N, Gaudet D, et al. (2025) Familial chylomicronemia syndrome: An expert clinical review from the National Lipid Association. J Clin Lipidol 19(3): 382-403.
- Gong Z, Xia Y, Sun C, Zheng W, Du T, et al. (2024) Comprehensive analysis
  of Chinese patients with non-LPL familial chylomicronemia syndrome:
  Genetic variants, dietary interventions, and clinical insights. J Clin
  Lipidol 18(6): e1086-e1095.
- 7. Zimodro JM, Rizzo M, Gouni Berthold I (2025) Current and Emerging Treatment Options for Hypertriglyceridemia: State-of-the-Art Review. Pharmaceuticals (Basel) 18(2): 147.
- 8. Blanco Echevarría A, Ariza Corbo MJ, Muñiz Grijalvo O, Díaz Díaz JL (2024) Familial chylomicronemia: New perspectives. Clin Investig Arterioscler 36 Suppl 2: S18-S24.
- Al Ashwal A, Al Helal M, Al Sagheir A, Alfattani A, Ramzan K, et al. (2024) Clinical and molecular characterization of familial chylomicronemia in Saudi patients: a retrospective study. Front Endocrinol (Lausanne) 15: 1439862.
- 10. Van Biervliet S, Vande Velde S, De Bruyne P, Callewaert B, Verloo P, et al. (2024) Familial chylomicronemia syndrome: a novel mutation in the lipoprotein lipase gene. Acta Gastroenterol Belg 87(2): 326-328.
- 11. Heath O, Allender B, Smith J, Savva E, Spencer L, et al. (2024) Diagnosis and stabilisation of familial chylomicronemia syndrome in two infants presenting with hypertriglyceridemia-induced acute pancreatitis. JIMD Rep 65(4): 239-248.
- Yoldas Celik M, Canda E, Yazici H, Erdem F, Yuksel Yanbolu A, et al. (2024) Long-term clinical outcomes and management of hypertriglyceridemia in children with Apo-CII deficiency. Nutr Metab Cardiovasc Dis 34(7): 1798-1806.
- 13. Mustafa M, Almheiri M (2024) Six-year follow-up of a child with familial chylomicronemia syndrome: disease course and effectiveness of gemfibrozil treatment --case report and literature review. Ann Pediatr Endocrinol Metab 29(2): 130-134.
- 14. Subramanian S (2024) Hypertriglyceridemia: Pathophysiology, Role of Genetics, Consequences, and Treatment. In: Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, Muzumdar R, Purnell J, Rey R, Sahay R, Shah AS, Singer

- F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.2000.
- 15. Baxter CL, Martin EG, Marwa BM, Pacaud D, Cummings EA (2023) Very severe hypertriglyceridemia complicating pediatric acute lymphoblastic leukemia treatment: a call for management guidelines. J Pediatr Endocrinol Metab 36(10): 978-982.
- 16. Patni N, Ahmad Z, Wilson DP (2023) Genetics and Dyslipidemia. In: Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, Muzumdar R, Purnell J, Rey R, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText. com, Inc. 2000.
- 17. Ariza MJ, Valdivielso P (2022) Familial chylomicronemia syndrome in children: a diagnosis challenge. Transl Pediatr 11(11): 1743-1747.
- 18. Shi H, Wang Z (2022) Novel pathogenic variant combination in LPL causing familial chylomicronemia syndrome in an Asian family and experimental validation in vitro: a case report. Transl Pediatr 11(10): 1717-1725.
- 19. Ayoub C, Azar Y, Maddah D, Ghaleb Y, Elbitar S, et al. (2022) Low circulating PCSK9 levels in LPL homozygous children with chylomicronemia syndrome in a syrian Sunil B, Ashraf AP. Childhood Hypertriglyceridemia: Is It Time for a New Approach? Curr Atheroscler Rep 24(4): 265-275.
- 20. Araujo MB, Eiberman G, Etcheverry N, Pacheco G (2022) Familial chylomicronemia syndrome: pediatric experience in Argentina. Arch Argent Pediatr 120(3): e123-e127.
- 21. Li Y, Hu M, Han L, Feng L, Yang L, et al. (2022) Case Report: Next-Generation Sequencing Identified a Novel Pair of Compound-Heterozygous Mutations of LPL Gene Causing Lipoprotein Lipase Deficiency. Front Genet 13: 831133.
- 22. Pećin I, Leskovar D, Šabić M, Perica D, Šućur N, et al. (2022) Prophylactic therapeutic plasma exchange in pregnant woman with Familial Chylomicronemia Syndrome - A case report. Transfus Apher Sci 61(3): 103346.
- 23. Tada H, Kurashina T, Ogura M, Takegami M, Miyamoto Y, et al. (2022) Prospective Registry Study of Primary Dyslipidemia (PROLIPID): Rationale and Study Design. J Atheroscler Thromb 29(6): 953-969.
- 24. Wang M, Zhou Y, He X, Deng C, Liu X, et al. (2021) Two novel mutations of the LPL gene in two Chinese family cases with familial chylomicronemia syndrome. Clin Chim Acta 521: 264-271.
- 25. Miyashita K, Lutz J, Hudgins LC, Toib D, Ashraf AP, et al. (2020) Chylomicronemia from GPIHBP1 autoantibodies. J Lipid Res 61(11): 1365-1376.
- 26. Yıldız Y, Uysal Yazıcı M, Çınar HG, Özbay Hoşnut F, Kurt Çolak F, et al. (2020) Successful management of acute pancreatitis due to apolipoprotein C-II deficiency in a 37-day-old infant. Pancreatology 20(4): 644-646.
- 27. Chyzhyk V, Kozmic S, Brown AS, Hudgins LC, Starc TJ, et al. (2019) Extreme hypertriglyceridemia: Genetic diversity, pancreatitis, pregnancy, and prevalence. J Clin Lipidol 13(1): 89-99.
- 28. Williams L, Rhodes KS, Karmally W, Welstead LA, Alexander L, et al. (2018) Familial chylomicronemia syndrome: Bringing to life dietary recommendations throughout the life span. J Clin Lipidol 12(4): 908-919.
- 29. Patni N, Li X, Adams Huet B, Garg A (2018) The prevalence and etiology of extreme hypertriglyceridemia in children: Data from a tertiary children's hospital. J Clin Lipidol 12(2): 305-310.

30. Teramoto R, Tada H, Kawashiri MA, Nohara A, Nakahashi T, et al. (2018) Molecular and functional characterization of familial chylomicronemia syndrome. Atherosclerosis 269: 272-278.

- 31. Buonuomo PS, Rabacchi C, Macchiaiolo M, Trenti C, Fasano T, et al. (2017) Incidental finding of severe hypertriglyceridemia in children. Role of multiple rare variants in genes affecting plasma triglyceride. J Clin Lipidol 11(6): 1329-1337.
- 32. Williams L, Wilson DP (2016) Editorial commentary: Dietary management of familial chylomicronemia syndrome. J Clin Lipidol 10(3): 462-465.
- 33. Zhang Y, Zhou J, Zheng W, Lan Z, Huang Z, et al. (2016) Clinical, biochemical and molecular analysis of two infants with familial chylomicronemia syndrome. Lipids Health Dis 15: 88.
- 34. Rabacchi C, Pisciotta L, Cefalù AB, Noto D, Fresa R, et al. (2015) Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia. Atherosclerosis 241(1): 79-86.
- 35. Ahmad Z, Wilson DP (2014) Familial chylomicronemia syndrome and response to medium-chain triglyceride therapy in an infant with novel mutations in GPIHBP1. J Clin Lipidol 8(6): 635-639.

- 36. Sisman G, Erzin Y, Hatemi I, Caglar E, Boga S, et al. (2014) Familial chylomicronemia syndrome related chronic pancreatitis: a single-center study. Hepatobiliary Pancreat Dis Int 13(2): 209-214.
- 37. Gündüz M, Koç N, Özaydın E, Ekici F (2014) Hypertrophic cardiomyopathy with familial chylomicronemia syndrome: is it an incidental finding or a new association? Indian J Pediatr 81(10): 1111-1112.
- 38. Franssen R, Young SG, Peelman F, Hertecant J, Sierts JA, et al. (2010) Chylomicronemia with low postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects. Circ Cardiovasc Genet 3(2): 169-178.
- 39. Beigneux AP, Franssen R, Bensadoun A, Gin P, Melford K, et al. (2009) Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol 29(6): 956-962.
- Adenwalla HS, Narayanan PV, Rajshree CJ, Santhakumar R (2008) An interesting case of familial chylomicronemia syndrome in a cleft palate child. Indian J Plast Surg 41(1): 70-72.
- 41. Lam CW, Yuen YP, Cheng WF, Chan YW, Tong SF (2006) Missense mutation Leu72Pro located on the carboxyl terminal amphipathic helix of apolipoprotein C-II causes familial chylomicronemia syndrome. Clin Chim Acta 364(1-2): 256-259.