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Abstract

In clinical research, a medical predictive modelling is often performed based on a set of risk factors (predictors) not only to inform disease 
status but also to predict the performance of clinical outcome for an effective disease management. Under a well-established and validated medical 
predictive model [1] developed a composite index of two highly correlated predictors regardless they may be positively or negatively and/or linearly 
or nonlinearly correlated to the clinical outcome or response. In this article, we extend [1] results to multiple correlated predictors in two ways. One 
is to fully utilize all predictors for development of so-called therapeutic index. The other one is to first 

(i)	 divide all predictors into two groups (e.g., efficacy and safety), 

(ii) obtain composite index of respective groups, i.e., efficacy index and safety index, and then

(iii) based on the individual composite index to develop a composite index for benefit-risk assessment [2]. The proposed extended composite 
indices are evaluated both theoretically and via a clinical trial simulation.

Keywords: Disease Management, Multiple Correlated Predictors, Multiplicative Model, Therapeutic Index, Benefit-Risk Assessment

Introduction
In clinical research, a medical predictive model is often 

developed using an appropriate statistical model based on some 
risk factors (predictors) which may be correlated positively or 
negatively in a linear or nonlinear fashion. In practice, a well-
established and validated medical predictive model cannot only be 
used to inform disease status but also provide valuable information 
regarding disease management including prevention, diagnosis, 
and treatment of the disease under study. Li and Chow suggested 
building a medical predictive model with a multivariate set of 
predictors using a (logistic) regression analysis approach by the 
following steps: 

(i)	 identifying potential predictors (e.g., demographics or patient 
characteristics) by determining associations between the 
potential predictors and the response, 

(ii)	 testing for co-linearity among the identified predictors, 

(iii)	 conducting predictive model fitting with the identified 
predictors, 

(iv)	 performing goodness-of-fit of the fitted model, and 

(v)	 validating the developed medical predictive model 
both internally (i.e., reproducibility) and externally (i.e., 
generalizability). 
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Chow, et al., [1] indicated that most commonly used composite 
indices in clinical research are of the form of 1 2

a bx x , where 1x  and 

2x are identified highly correlated risk factors (predictors). For 
example, Body Mass Index (BMI) is commonly considered in obesity 
studies, where BMI is defined as the ratio between body weight 
(kg) and the square of height (m), i.e., BMI 1 2

a bx x= , where 1x  is 
body weight (kg) and 2x  is height (m) with a = 1 and b = -2. For 
another example, consider studies for examination of QT interval 
prolongation for cardiotoxicity. The commonly considered index is 
Bazett ‘s QT interval adjusted for heart rate (RR), denoted by CQT B
, where CQT B = 1 2

a bx x , where 1x is QT interval and 2x  is RR with 
a = 1 and b = -1/2  [3]. Along this time, Chow, et al., [1] proposed 
the development of a composite index of two highly correlated risk 
factors under a multiplicative model. Chow, et al., [1] also indicated 
that their proposed composite index has the following advantages: 
first, in the interest of parsimony of predictors, the development a 
composite index reduces a multiple-parameter (e.g., two predictors 
as discussed in this article) problem to a single parameter (the 
developed composite index) problem. Second, the developed 
composite index is able to address the positively/negatively and/
or linearly/non-linearly correlation between each of the two 
predictors (which are correlated each other) and the response. 
Third, the developed composite index outperforms each individual 
predictor in two ways:

(i)	 if each predictor can inform the disease status or treatment 
effect, the composite index can definitely do and 

(ii)	 if the composite index can inform the disease status or 
treatment effect, each individual predictor may not be able to.

The purpose of this article is to develop a statistically principled 
framework for constructing composite indices from multiple, 
potentially correlated risk factors, and to investigate how such 
indices can be used for clinical prediction, therapeutic evaluation, 
and benefit–risk assessment. Specifically, we aim to 

(i)	 propose a systematic procedure for deriving the exponent 
parameters of a composite index through a log–linear modeling 
approach, and 

(ii)	 explore practical considerations such as interpretability, 
rounding of exponent parameters, and implementation in 
clinical decision making. The remainder of this article is 
organized as follows. Section 2 briefly outlines the general 
statistical methodology for developing a composite index 
based on multiple correlated risk factors, including model 
formulation, parameter estimation, and the Bayesian predictive 
framework. Section 3 validates the developed composite index 
and examines its characteristics and practical challenges. 
Section 4 presents potential applications, with emphasis on (i) 
the development of a therapeutic index and (ii) a composite 
index for benefit–risk assessment. Section 5 reports simulation 
results and discusses adjacent-integer considerations.

Statistical Method
Notations

Under the multiple regression framework, the dataset can be 
represented in matrix form as follows:
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where Y  is the n x 1 vector of observed responses, and X  is 
the n k× design matrix of predictors. The element ijx  denotes 
the value of the i -th predictor for the j -th observation. Without 
loss of generality, assume that Y and all predictors iX  (i = 1, 2, …, k) 
are standardized variables. Under standardized variables, the mean 
and variance of the regressors are given by

2
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Similarly, for the standardized variable of the clinical outcome 
response (dependent variable), we have
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Suppose we are interested in developing a composite index for 
a group of m highly correlated variables, where m  ≤ k.

Under standardized variables, the sample covariance between 
any two predictors 

iX  and 
tX  (1 ,  )i t k≤ ≤ is given by

1 1

1 1 .
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j j

s x X x X x x
n n

− −

= =

  = − − =  
  ∑ ∑

Similarly, the sample covariance between Y  and iX is 

1

1 .
n

iy ij j
j
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As a result, the sample correlation between iX and tX  and 
between iX  and Y can be expressed as 
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Statistical Model

Under the framework of standardized variables, statistical 
model can be written as follows

    ,Y X β ε= +
where Y  is the 1n× vector of dependent variables, X is the 

n K× matrix of regressors, β  is the 1K × vector of regression 
coefficients, and ε is the 1n× vector of random errors. Thus,

the Ordinary Least Squares (OLS) estimator of β is given by

 
� ( ) 1' ' .X X X Yβ

−
=

Based on standardized variables, �β  can be expressed as a 
function of the sample correlations.

Denote by '
jx the j -th row vector of X . Then the ( ),i t -th 

element of 'X X  is given by

( )'

1

.
n

ij tj it itit
j
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Furthermore, the i -th element of 'X Y  is 

( )'

1

.
n
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j
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=
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Now, let xxr denote the sample correlation matrix of X, whose 
( ),i t -th entry is itr . Thus, xxr   is a k k×  symmetric matrix. 
Similarly, let  yXr  denote the k×1 vector whose i  -th element is 

iyr . Then we can write

' ', .xx yXX X nr X Y nr= =

Substituting into the OLS estimator, we obtain

� ( ) ( ) ( )1 1' ' 1 .xx yX xx yXX X X Y nr nr r rβ
− − −= = =

Hence, under standardized variables, the OLS estimator 
depends only on the correlation structure among predictors and 
their correlations with the response variable. The vector

� � �( )^ '

1 2â , , , kβ β β= …

provides the estimated contribution of each predictor to the 
response Y, which will be used to identify highly correlated subsets 
of predictors for composite index construction.

Development of Composite Index

Chow, et al., [1] proposed a general methodology for 
development of a composite index of two dependent predictors 
regardless they are positively or negatively and/or linearly or 
nonlinearly correlated under a well-established and validated 
medical predictive model. In this subsection, we will focus on the 
development of a composite index for multiple predictors (i.e., k > 
2). 

Let [ ] ( )1, , ,  , .n n k k
kY R X X X R standardized columns Rβ×∈ = … ∈ ∈ . Fit the single global OLS once: 

� ( ) �( )1' ' 1â ,   ,âall all xx yXX X X Y equivalently with standardized data R r
− −= = .

This yields � jβ for every  1 , , .j k= …

Following similar idea as Chow, et al., [1], the composite index 
of k multiple predictors can be obtained by following the following 
steps.

Step 1. Identify Highly Correlated Predictors

 We first identify subsets of predictors that exhibit high 
degrees of intercorrelation, as these are the best candidates for 
integration into a composite index. Specifically, among the k 
available predictors, we consider all possible subsets of size m = 
2,3, 4 … k. The number of such subsets is given by the binomial 
coefficient m

k
 
 
 

. For each subset of m predictors, we calculate its 

correlation coefficient matrix, denoted by A. For this purpose, two 
complementary methods are proposed to evaluate the degree of 
collinearity within each subset:

Eigenvalue-based method (Belsley, 1980) – By definition, the 
correlation between ix and jx , denoted by A can be expressed as
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For each correlation matrix A, we compute its eigenvalues 1λ
, 2λ … mλ

( )1 2ë 0 ë ë , ë , , ë ,mA I− = ⇒ = …

The condition index maxκ is defined as:

ê ë / ëmax max min=

According to Belsley (1980), if maxκ < 10, collinearity can be 
considered negligible.

If 10 ≤ maxκ ≤ 30, moderate collinearity exists; and if maxκ > 
30, the subset exhibits severe collinearity. We calculate maxκ for all 

m
k

 
 
 

possible subsets.

To operationalize the eigenvalue-based identification of highly 
collinear predictors for composite index construction, we consider 
two complementary subset selection rules:

Thresholded Lexicographic Condition-Index Rule 
(Diagnostic Rule): We evaluate the condition index ( )max Sκ for 
all non-empty subsets S of the K  candidate predictors. Following 
the diagnostic interpretation of the condition index [4], we restrict 
attention to subsets exhibiting moderate multicollinearity, defined 
as those with ( ) 0max S Kκ > , We set 0K = 10 as a conservative 
diagnostic cutoff, restricting attention to subsets that already 
exhibit at least moderate collinearity; this ensures the selected 
subset is sufficiently redundant to be well summarized by a single 
composite index. Among all such subsets, we select the subset with 
the smallest cardinality |S| thereby identifying the minimal group 
of predictors that already displays collinearity. If multiple subsets 
share this minimal size, we retain the subset with the largest 
condition index ( )max Sκ .

Penalized Condition-Index Rule (Complexity–Collinearity 
Trade-Off) – When no subset satisfies the severe-collinearity 
threshold, or when one wishes to explicitly balance collinearity 
strength against subset size, we adopt a penalized selection 
criterion. Specifically, for each non-empty subset S, we compute 

( ) max Sκ and define the penalized objective

( )( )  (  maxJ S log Sλ κ= ,

where   0 λ ≥ controls the penalty on subset size. We then 
select the subset

*( )    ( ).S arg max J Sλλ =
This criterion Favors subsets that yield a substantial increase 

in the condition index while discouraging mechanically larger 
subsets. The logarithmic transformation stabilizes the scale of 

( )max Sκ  and yields an interpretable trade-off: adding one 
additional predictor must increase ( )max Sκ by at least a factor of 
eλ to offset the penalty. In empirical applications, λ can be selected 
via external validation (e.g., maximizing predictive reproducibility).

Determinant-Based Method – Alternatively, for each 
correlation matrix A, we compute its determinant, denoted by |A|.  
The determinant provides a scalar measure of multicollinearity:

A → 0 implies strong collinearity,

whereas  A →1 implies weak collinearity.

When comparing subsets of different cardinalities, we further 
consider a dimension-normalized determinant defined as 

1/mA , 
which removes the mechanical dependence of the determinant on 
subset size and enables meaningful comparison across subsets of 
different dimensions. In practice, we evaluate this criterion over 
all non-empty subsets of the k candidate predictors. Specifically, 
for each subset size  1 ,   , , m k= … , we enumerate all  

m
k

 
 
 

possible 
subsets and compute the corresponding correlation matrices and 
their determinants. The final subset used for composite index 
construction is selected by minimizing the dimension-normalized 
determinant 1/mA across all candidate subsets.

Step 2. Retain the Corresponding Coefficients from the 
Global Fit

For the chosen m variables, let  {1, , }S k⊂ … denote the index 
set of the m variables selected in Step 1; in what follows we work 
with the submatrix X_S and retain the corresponding coefficients 
� �{ : }S j j Sβ β= ∈ from the global fit.

Define the subset-driven linear predictor (partial contribution):
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Step 3. Construct the Multivariate Composite Index for m 
Variables

Consider

                                                    � 1 2

1 2

m

m

aa a
m m m mY X X X ε=  ,

After taking log-transformation, we have 
�

1 21 2log log log log log
mm m m m mY a X a X a X ε= + + + +

Let
� �

1 1

' 'log , log , logm m m mY Y X X e ε= = =

�
1 2

' ' ' '
1 2 mm m m m mY a X a X a X e= + + + +

Estimate the exponents ja  by the method of ordinary least 
square (OLS), the resultant composite index is then given by

� � � �1 2

1 2
   m

m

aa a
m m m mComposite Index Y X X X= = 

Validation of the Developed Composite Index
We may validate the developed composite index by considering 

how close an observed response y  , its predicted value �my  and 
the predicted value �my   (obtained from the fitted regression 
model of the composite index) are to one another. Specifically, let 
the predicted value from the regression model be

� � � �
1 1 2 2 m mm m m m m m mY X X Xβ β β= + + +

and let the predicted value from the composite index be

� � � �1 2

1 2

m

m

a a
m m

a
m mY X X X= 

To assess the closeness between �mY  and �mY  we propose 
two criteria based on either the absolute difference or the relative 
difference between them.

� �

�1 . m m

m

y yCriterion I p P
y

δ
 −

= <  
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,

� �

�2 . m m

m

y yCriterion II p P
y

δ
 −

= <  
 

where δ  denotes a clinically or scientifically meaningful 
tolerance level. In other words, it is desirable to have a high 
probability that the absolute or relative difference between the 

predicted value �my  and that from the composite index model �my  
is less than δ .

Let 1p and 2p denote the probabilities defined above. For 
either  1   2 ,i or=  it is of interest to test the following hypotheses:

0 0 0: : ,i a iH p p versus H p p≤ >
where p_0 is a pre-specified constant (e.g., a desired level of 

predictive agreement).

If the conclusion is to reject 0H in favour of aH then the 
developed multivariate composite index is considered statistically 
validated.

Internal Validation (Reproducibility Probability)

Consider the following exponential model 
� 1 2

1 2

m

m

aa a
m m m mY X X X ε= 

Thus, the constructed composite index with the estimated 
exponent vector is given by 

� � � �1 2

1 2

m

m

aa a
m m m mY X X X=  ,

where  � �( )1, , ma a a= … is the vector of estimated exponent 
coefficients obtained from the following log-transformed regression 
analysis

�
1 21 2log log log log log

mm m m m mY a X a X a X ε= + + + +

where �( )' log mY Y= , ( )1

' log , , log
mm mX X X= …  , 

and ( )loge ε= .

Thus, we have 

( )' ' 2, where  ~ 0,Y X a e e N Iσ= +

The training dataset is given by

( )' '{ , }D X Y=

Thus, the reproducibility probability quantifies the chance that 
the predicted composite index is close to the true composite index 
for a new patient

� �( )* * |rp P Y Y Dδ= − <

Substituting the definitions 

( ) ( )( )'* '*exp exp |T
rp P Y X a Dδ= − < ,

where δ  is pre-determined, clinically negligible value.

By Bayes Therom, we have 
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( ) ( ) ( )
( ) ( )
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σ π σ
π σ

σ π σ
=
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where  ( )' ' ' 2, , ~ ,Y X a N X a Iσ σ쭽 . If the prior is 
specified as

( )0 0~ ,Óa Nσ µ쭽 ,

then the posterior is

( ), ~ ,Ó a aa D Nσ µ쭽

where:
1

' ' 1
02

1Ó ÓT
a X X
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' ' 1
0 02
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Then the estimate of the exponent coefficients is given by 


aa µ= .

For a non-informative prior then: 

1
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a X X

σ

−
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, ' '
2

1 Ó T
a a X Yµ
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For a new patient, the latent log-composite-index value is 
generated as

'* '* *TY X a e= + ,  ( )* 2~ 0,e N σ
Integrating over the posterior of a yields the Bayesian posterior 

predictive

( )'* '* '* '* '* 2, , ~ ,Ó T T
a aY X D N X X Xσ µ σ+쭽

The predicted composite index for the new patient is
� ( )* '*exp TY X a=

This value is deterministic given data and the new patient’s 
predictors.

The true composite index for the new patient follows the true 
model:

� 1 2 ** ** *
1 2

maa a
mY X X X ε=  , 

�( )'* * '* *log TY Y X a e= = +

So, the true composite index is: 

� ( )* '*expY Y=

This is a random variable, whose distribution is given by the 
posterior predictive above. Then we can compute the reproducibility 
probability.

For a more realistic case in practice where σ  is unknown, we 
place the following conjugate prior on the log-linear model:

( )2 2
0 0~ ,Óa Nσ µ σ쭽 ,   ( )2 1

0 0~ ,Gammaσ α λ−

Given the conjugate prior, the posterior distribution is 
expressed as

( )' ' 2 2, , ~ ,Ó a aa X Y Nσ µ σ쭽  , 

( )2 ' ' 1, ~ ,X Y Gamma δ δσ α λ−쭽 ,

where

( ) 11 ' '
0Ó Ó T

a X X
−−= + , ( )1 ' '

0 0Ó Ó T
a a X Yµ µ−= +

0 2
n

σα α= + , 

( )' ' 1 1
0 0 0 0

1 Ó Ó
2

T T T
a a aY Yδλ λ µ µ µ µ− −= + + −

The posterior predictive distribution is given by

( ) ( ) ( )'* '* '* '* 2 2 2, , , ,p Y X D p Y X a p a D da dσ σ σ= ∫  

( )'* '* '* '* '*
2, ~ , 1Ó T T

a aY X D t X X X
δ

δ
α

δ

λµ
α

 
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 
쭽

Then we can compute the reproducibility probability.

External Validation (Generalizability Probability) 

The posterior distribution a | D δ  characterizes how the 
exponent parameters are distributed in the original population. 
However, when applying the composite index to a different patient 
population, the underlying risk structure may change. To evaluate 
whether the composite index generalizes to such new populations, 
we adjust the posterior distribution of a to reflect potential 
population‐level differences.

We assume that when moving from the original population to 
a new population, the exponent parameters may change in two 
systematic ways:

Mean shift – The average effect of each predictor may differ 
across populations. This is modeled by a shift vector

( )1, , T
mλ λ λ= …

Variance – Predictor effects may become more or less variable 
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in a new population. To capture this, we introduce a diagonal 
scaling matrix

1

2

0 0
0 0

, 0

0 0

j

m

c
c

C c

c

 
 
 = >
 
 
 





   



so that the covariance is inflated or deflated by CΣ_a C. Under 
this population‐shift assumption: 

( ) ( )~ ,Ónew
a aa D N C Cµ λ+쭽

This distribution represents what the exponent vector would 
look like if the composite‐index model were developed in the new 
population instead of the original population.

For a new patient with log predictors

( )1

'* * *log , , log
m

T

m mX X X= …

the log‐composite index in the shifted population becomes:
( ) ( )'* '* * * 2, ~ 0,newT

newY X a e e N σ= +

Thus, the posterior predictive distribution is:

( ) ( )( )* * * * * 2' ' , ~ ' , 'Ó ' T T
new a aY X D N X X C C Xµ λ σ+ +쭽

If σ2 is unknown, the predictive distribution becomes a 
Student–t distribution, fully analogous to the reproducibility 
analysis.

True composite index for the new population：
� ( )* '*expnew newY Y=

Predicted composite index from our model：

� ( )'** exp TY X a=

Then the generalizability probability is:

� �( )* * |g newp P Y Y Dδ= − <

It measures how likely the composite index, when applied to 
a different patient population, continues to produce predictions 
sufficiently close to the true composite‐index values of that 
population.

Remarks

Characteristic of Composite Index

The composite index is data-adaptive, exploiting correlation 

structure to summarize shared information among predictors. Its 
multiplicative, log-linear formulation ensures scale invariance and 
yields interpretable contribution weights. By combining penalized 
subset selection with external reproducibility evaluation, the index 
balances parsimony and robustness. Importantly, the composite 
index retains the original variables and produces directionally 
meaningful contributions, facilitating clinical interpretation. Unlike 
Principal Component Analysis (PCA), which generates orthogonal 
components that are often difficult to interpret clinically, the 
proposed index preserves the original clinical measurements. In 
contrast to penalized regression methods such as LASSO, which 
are primarily designed for sparse prediction, the composite index 
focuses on stable aggregation of correlated information. Compared 
with simple unweighted summation, it allows data-driven weighting 
without imposing equal contributions across predictors.

From a practical perspective, the composite index is 
straightforward to implement once the relevant predictors are 
identified. Under a well-established medical predictive model, 
it offers several advantages, including parsimony in risk factors, 
potential use as a diagnostic or monitoring tool, and utility in 
disease management through integration of multiple clinically 
relevant measurements into a single summary measure [5].

Challenging of Composite Index

Despite its flexibility and interpretability, the proposed 
composite index faces several practical and methodological 
challenges. First, its construction relies on the presence of sufficient 
correlation among candidate predictors. When predictors are 
weakly related or capture largely independent dimensions, 
correlation-based screening may fail to identify meaningful subsets, 
and the resulting index may offer limited advantage over simpler 
aggregation strategies. In such cases, alternative formulations, such 
as therapeutic indices based on all available predictors, may be 
more appropriate. Second, the estimation of exponent coefficients 
is sensitive to data quality and sample size. As the index is derived 
from log-transformed variables and fitted through regression-
based procedures, small sample sizes, measurement error, or 
extreme values can disproportionately influence the estimated 
weights, potentially affecting stability and reproducibility.

Third, predictors may be of different data types, including 
continuous, categorical, or ordinal variables. In such settings, the 
proposed methodology may require modification, for example 
through appropriate encoding or transformation into standardized 
scores before index construction. verall, these challenges highlight 
the importance of using composite indices judiciously, with careful 
attention to data structure, estimation stability, sample size 
considerations, and application context [6].

Potiential Application

Development of Therapeutic Index 

[7] The composite index construction described above relies on 
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identifying subsets of predictors that exhibit strong intercorrelation. 
In practice, clinical predictor sets often contain correlated 
variables, but the therapeutic index retains all available predictors 
regardless of their dependence structure. A Therapeutic Index 
(TI) is designed to provide a global summary of treatment-related 
or clinical information without imposing any correlation-based 
selection among predictors. All available predictors are retained, 
regardless of their mutual dependence structure. This formulation 
is particularly useful in settings where predictors capture distinct 
biological or clinical dimensions and are not expected to be highly 
correlated.

Formally, let 1   (  , ... ,  )kX X X=  denote the full set of 
standardized predictors. We construct the therapeutic index using 
the same log-linear framework as in the composite index, but 
applied to the entire predictor set:

1 1 2 2           ...       ,k klog Y a log X a log X a log X e= + + + +
where the exponent vector 1  ( , ... ) ka a a=  is estimated 

by ordinary least squares after standardization and centering, 
following the same estimation procedure described in Section 2.

The resulting therapeutic index takes the multiplicative form
� � �
1 2

1 2    ... .kaa a
kTI X X X∝

Unlike the composite index, the therapeutic index does not 
aim to exploit redundancy among predictors. Instead, it provides 
an aggregate measure that reflects the joint contribution of all 
available variables. As a result, the therapeutic index is more 
broadly applicable but may be less parsimonious and potentially 
more sensitive to noise when predictors are weakly related.

Composite Index for Benefit-Risk Assessment [8,9]

Beyond constructing a single index, the proposed framework 
naturally extends to benefit–risk assessment by separating efficacy-
related and safety-related information into distinct composite 
indices. Specifically, we first construct an efficacy index using all 
available efficacy parameters, such as primary and secondary 
clinical outcomes, biomarkers reflecting treatment benefit, or 
disease progression measures. All efficacy predictors are retained, 
and the index is estimated following the same log-linear procedure 
described above. Similarly, a safety index is constructed using all 
relevant safety parameters, which may include adverse event rates, 
laboratory abnormalities, drug exposure measures, and indicators 
of patient adherence or compliance. No correlation-based screening 
is imposed at this stage, allowing the safety index to capture 
multiple, potentially heterogeneous dimensions of treatment risk.

Formally, let ( ) EX and ( ) SX denote the sets of efficacy and 
safety predictors, respectively. The resulting indices take the 
multiplicative forms

( )^
( )   ( )

E

jaE
j

j

fficacy Index X∝∏ , 

( )^
( )   ( )

S

lS a
l

l

Safety Index X∝∏

where the exponent vectors are estimated separately within 
each domain.

This perspective naturally supports separating efficacy-
related and safety-related information into distinct yet comparable 
summaries, enabling transparent integration and sensitivity 
analyses when balancing potential gains against risks.

Concluding Remarks

Simulation 

To simulate the proposed composite index procedure, we apply it 
to the Primary Biliary Cirrhosis (PBC) dataset. The outcome variable 
is the time from study registration to death, recorded as time. The 
candidate predictors include nine laboratory measures: bilirubin 
(bili), cholesterol (chol), albumin (albumin), copper (copper), 
alkaline phosphatase (alk.phos), aspartate aminotransferase (ast), 
triglycerides (trig), platelet count (platelet), and prothrombin time 
(protime). All analyses are conducted on complete cases.  Using the 
penalized condition-index rule, we select the subset of predictors 
that balances collinearity and model complexity. A grid search over 
the penalty parameter λ  identifies λ  = 0.15 as maximizing the 
external reproducibility probability. The resulting subset is

*   { S = bili, ast, trig}.

Applying the composite index construction to this subset yields 
continuous exponent estimates

 
� � �  0.35,   0.13,   0.01.bili ast triga a a=− = =−

Discussion
For clinical implementation, continuous exponents can 

be difficult to communicate or operationalize. We therefore 
considered a restricted set of interpretable exponents, allowing 
only integers and half-integers ending in .5. For each coefficient 
�

ja , we generated two candidates:

1.	 the nearest integer, and

2.	 the nearest half-integer ending in .5.

With three predictors in *S this produces 32 = 8 possible 
rounded composite indices. For each candidate index, we re-
computed the external reproducibility probability rp and selected 
the rounded index that maximized rp . The best-performing 
rounded index is

0.5 0.5 0.5   .  .   
 .rounded

astComposite Index bili ast trig
bili trig

− −∝ =
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