Volume 22 - Issue 1

Research Article Biomedical Science and Research Biomedical Science and Research CC by Creative Commons, CC-BY

Theoretical Investigation on N-Heterocyclic Carbene- Catalyzed Tandem Imine Umpolung-Cyclization Via Breslow Intermediate

*Corresponding author:Nan Lu, College of Chemistry and Material Science, Shandong Agricultural University, Taian, China.

Received: March 25, 2024; Published: April 04, 2024

DOI: 10.34297/AJBSR.2024.22.002911

Abstract

The mechanism is investigated for tandem imine umpolung-cyclization of aldimine leading to isoindolinone and other two imine derivatives catalyzed by N-Heterocyclic Carbene (NHC). The aldimine is attacked by NHC generating tetrahedral intermediate, from which the intramolecular aza-Michael addition followed by H transfer gives key aza-Breslow intermediate. After oxidation by oxygen molecule, the precursor of desired N-aryl 3-isoindolinone is obtained via oxygen atom exchange from its oxidation product to itself. The alternative H transfer ahead of concerted aza-Michael addition is excluded owing to high activation energy. The preferential path is both favoured by thermodynamics and kinetics. The initial imine umpolung is consistent for other two derivatives. The following aza-Michael addition is rate-limiting. The positive solvation effect is suggested by decreased absolute and activation energies in DMSO solution compared with in gas. These results are supported by Multiwfn analysis on FMO composition of specific TSs, and MBO value of vital bonding, breaking.

Keywords: Imine umpolung, Breslow intermediate, N-Heterocyclic Carbine, aza-Michael addition, Oxygen exchange

Introduction

As privileged structural motifs, isoindolinones have been found in various natural products such as indolocarbazoles, cytochalasan alkaloids and meroterpenoids from anthraquinone-type alkaloids in intact or modified form [1]. They also emerged as active pharmaceutical ingredients to inhibit MDM2-P53 interaction and treated follicular lymphoma [2]. Particularly, N-substituted isoindolinones possess interesting biological properties. The pazinaclone is a new non-benzodiazepine compound with high affinity for benzodiazepine receptors used to alleviate anxiety [3]. With good water solubility and wide safety margin, N-aryl isoindolinone acetamide showed potent sedative-hypnotic activity [4]. Isoindolin-1-one derivative JM1232 had antinociceptive property of intrathecal and intraperitoneal administration to treat anxiolytic disorders [5]. Therefore, the development of efficient strategies has attracted considerable attention to construct such molecular skeleton. Recently, a series of isoindolinones were designed such as selective dioxane-mediated aerobic oxidation of isoindolines, intramolecular formal [4+2] cycloaddition, divergent reaction of isocyanides with o-bromobenzaldehydes, structure-guided synthetic route of PI3Kγ inhibitor and chiral brønsted acid catalyzed enantioselective [3+2] cycloaddition [6-10].

N-Heterocyclic Carbene (NHC) is versatile Lewis-base organocatalyst to facilitate cross-nucleophilic addition in C-C and C-heteroatom construction through umpolung with various electrophiles [11]. Rovis reported the isolation of aza-Breslow intermediate derived from chiral triazolylidene carbine [12]. Michon achieved chiral phase transfer-catalyzed intramolecular aza-Michael reaction with ortho-alkenyl substituted benzamide for asymmetric synthesis of isoindolinone [13]. Singh discovered a general catalytic route to enantioenriched diazo-substituted isoindolinone catalyzed by chiral phosphoric acid from the reaction of ortho-formyl benzoate, amine, and diazoacetate [14]. Recently, most efforts were devoted to one-pot synthesis of isoindolinone catalyzed by transition metal including Kumar’s Ru (II)-catalyzed oxidative olefination of benzamide via switchable aza-michael and aza-wacker reaction [15,16]. Biju group developed NHC-catalyzed umpolung of imine to access indole for the first time [17]. Then Lupton explored exploited the enantioselective catalysis of imine umpolung [18]. Das emphasized imines as key acceptors and donors in synthesis of amides and nitrogen heterocycles [19]. Chi researched carbene-catalyzed activation of remote N of (benz)imidazole-derived aldimines [20]. Fu studied the oxidation of functionalized aldimines as 1,4-dipoles catalyzed by asymmetric carbine [21].

In this field of NHC-catalyzed imines umpolung, what interests us the most is various organic transformation reported by Suresh group [22-24]. Based on the design principle of starting material with both imine and conjugate acceptor functional groups, they envisioned to synthesize isoindolinone acetic acid derivatives applying NHC catalysis. They successively achieved NHC-catalyzed oxidation of β-carboline cyclic imines, unactivated aldimines to amides, intramolecular stetter reaction and acid-mediated condensation. A recent breakthrough was NHC-catalyzed tandem imine umpolung-intra-molecular aza-Michael addition-oxidation to construct N-substituted isoindolinone acetate [25]. Although desired N-aryl 3-isoindolinone was obtained, there is no report about detailed mechanistic study explaining the conversion of imine to amide. What’s the function of NHC in intramolecular aza-Michael addition generating aza-Breslow intermediate? How the radical recombination is proceeding with single electron transferred by molecular oxygen in air? Why is another molecule of aza-Breslow intermediate necessary to regulate the entire reaction process? To solve these mechanic problems in experiment, an in-depth theoretical study was necessary for this NHC-catalyzed tandem reaction. The Density Functional Theory (DFT) method was employed focusing on the promotion of NHC during the connection among three tandem isolated reactions.

Computational Methodology

Optimized structures were obtained at M06-2X/6-31G(d) level of theory with GAUSSIAN09 [26]. In tests of popular DFT methods [27], M06-2X functional attained smaller standard deviation of difference between calculated value and experimental value in geometries than B3LYP including Becke's three-parameter hybrid functional combined with Lee-Yang-Parr correction for correlation [28,29]. The best compromise between accuracy and time consumption was provided with 6-31G(d) basis set on energy calculations. Also, M06-2X functional was found to give relatively accurate results for catalysed enantioselective (4+3), concerted [4+2], stepwise (2+2) cycloaddition and catalysed Diels-Alder reactions [30,31]. Together with the best performance on noncovalent interaction, M06-2X functional is believed to be suitable for this system [32-34]. The nature of each structure was verified by performing harmonic vibrational frequency calculations. Intrinsic Reaction Coordinate (IRC) calculations were examined to confirm the right connections among key transition-states and corresponding reactants and products. Harmonic frequency calculations were carried out at the M06-2X/6-31G(d) level to gain Zero-Point Vibrational Energy (ZPVE) and thermodynamic corrections at 298.15 K and 1 atm for each structure in Dimethyl Sulfoxide (DMSO).

The solvation-corrected free energies were obtained at the M06-2X/6-311++G(d,p) level by using Integral Equation Formalism Polarizable Continuum Model (IEFPCM) in Truhlar’s “density” solvation model [35-39] on the M06-2X/6-31G(d)-optimized geometries. As an efficient method obtaining bond and lone pair of a molecule from modern ab initio wave functions, NBO procedure was performed with Natural bond orbital (NBO3.1) to characterize electronic properties and bonding orbital interactions [40-42]. The wave function analysis was provided using Multiwfn_3.7_dev package [43] including research on Frontier Molecular Orbital (FMO) and Mayer Bond Order (MBO).

Results and Discussion

Based on previous research [21-25], the mechanism was explored for NHC-catalyzed tandem imine umpolung-cyclization of aldimine 1 leading to isoindolinone 2 compared with substrates 3 and 4 (Scheme 1).

Biomedical Science &, Research

Scheme 1: N-heterocyclic carbene-catalyzed tandem imine umpolung-cyclization of aldimine 1 leading to isoindolinone 2 compared with substrates 3 and 4.

Depicted by the red arrow of Scheme 2 and illustrated by the black dash line of Figure 1a (path A), the aldimine I was attacked by nucleophilic NHC to generate a tetrahedral intermediate II. Then, intramolecular aza-Michael addition takes place followed by H transfer forming aza-Breslow intermediate III. Subsequently, III undergoes oxidation with one molecular of oxygen to produce IV, which reacts with another molecule of III affording the complex binding two molecules of intermediate V. At last, NHC departs from V producing desired product N-aryl 3-isoindolinone 2. An alternative H transfer ahead of concerted aza-Michael addition was given by red dash line of Figure 1a (path B). The generation of Breslow intermediate was also discussed for another two imine derivative 3, 4 as substrates shown by blue, green arrow of Scheme 2 and black, red dash line of Figure 1b. For both, the initial step of imine umpolung is consistent via nucleophilic addition of NHC to 3 or 4 obtaining 3-II or 4-II. Only one step of H transfer is required for 4-II leading to aza-Breslow 4-III. In contrast, the H transfer of 3-II occurs concertedly with intramolecular cyclization yielding 3-III, which is not a typical Breslow intermediate. The optimized structures of TSs in Scheme 2 were listed by Figure 2. The activation energy was shown in Table 1 for all steps. Supplementary Table S1, Table S2 provided the relative energies of all stationary points. According to experiment, the Gibbs free energies in DMSO solution phase are discussed here.

Biomedical Science &, Research

Scheme 2: Proposed reaction mechanism of N-heterocyclic carbene-catalyzed tandem imine umpolung-cyclization of aldimine 1, imine derivative 3, 4. TS is named according to the two intermediates it connects.

Biomedical Science &, Research

Figure 1: Geometric structures of TSs for N-heterocyclic carbene-catalyzed tandem imine umpolung-cyclization. Selected bond distances are given in Å. Irrelevant hydrogen atoms are omitted for clarity. Figure 1a:

Biomedical Science &, Research

Figure 1b:

Biomedical Science &, Research

Figure 2: Relative Gibbs free energy profile of N-heterocyclic carbene-catalyzed tandem imine umpolung-cyclization in solvent phase starting from complex (a) i1, i3, i4 (b) 3-i1, 4-i1.

Biomedical Science &, Research

Table 1: The activation energy (in kcal mol-1) of all reactions in gas and solvent.

Imine Umpolung-aza-Michael Addition-H Transfer

A complex i1 between 1 and NHC was taken as starting point of initial imine umpolung, where the nucleophilic addition of NHC proceeds via ts-i1II with a activation energy of 4.5kcal mol-1 exothermic by -8.1kcal mol-1 furnishing tetrahedral intermediate II. The transition vector corresponds to the approaching of C1 to C4 and elongation of C1-N double bond (1.91, 1.33 Å) (Figure S1a). This step 1 is fairly easy whether from small barrier kinetically or from heat release thermodynamically. The sp2 imine C1 becomes sp3 involving C1-C4 single bond with lone pair located C4 of NHC. To highlight the idea of changes both in electron density and molecular orbital interactions responsible for the reactivity of organic molecules, quantum chemical tool Multiwfn was applied to analyze of electron density such as MBO results of bonding atoms and contribution of atomic orbital to HOMO of typical TSs (Table 2,3). HOMO distribution was presented by Figure 3. For ts-i1II, HOMO is mainly contributed by the big π orbital of aromatic imine benzene ring, bonding π orbital of C1-N and lone pair electron on C4 (2.41%, 30.27%, 9.71%). MBO values of C1···C4 and C1···N (0.50, 1.41) suggest the bond formation and weaken of double bond.

Biomedical Science &, Research

Table 2: Contribution (%) of Natural Atomic Orbital (NAO) to Highest Occupied Molecular Orbital (HOMO) of typical TSs.

Biomedical Science &, Research

Table 3: Mayer Bond Order (MBO) of typical TSs.

Biomedical Science &, Research

Figure 3: Highest Occupied Molecular Orbital (HOMO) of typical TSs. Different colors are used to identify the phase of the wave functions.

Subsequently, the intramolecular aza-Michael addition takes place via ts-IIi2 as step 2 with a activation energy of 9.4 kcal mol-1 leading to i2 exothermic by -13.4 kcal mol-1. The transition vector of ts-IIi2 includes the link of nucleophilic N to C2 and stretching of C2-C3 double bond (1.94, 1.39 Å) (Figure S1b). Owing to the electron withdrawing ester CO2Me, C2 is more positive suitable for being nucleophilic attack, which turns to be sp3 hybrid with new N-C2 single bond. In resultant i2, the conjugation moves from alkene C2-C3 to C3 and ester group. This situation is verified by HOMO of ts-IIi2 major on bonding π orbital between C3 and CO2Me, lone pair p orbital of N, while minor on C2 (22.45%, 39.85%, 1.22%). MBO values of N···C2 and C2···C3 (0.39, 1.42) also confirms this changing tendency.

With more π electron, C3 is ready for the following proton transfer thereby easy to accept H1 from C1. Via ts-i2III, the activation energy of step 3 is 5.7 kcal mol-1 with respect to i2 forming aza-Breslow intermediate III continuously exothermic by -27.7 kcal mol-1. The transition vector of ts-i2III corresponds to H1 transfer from C1 to C3 and contraction of C1-C4 single bond to double (1.23, 1.77, 1.45 Å) (Figure S1c). Characterized by typical C1-C4 double bond linking with NHC and sp3 type C2, C3, the structure of III is more stable than II or i2 as a powerful driving force in thermodynamics. Clearly, these three steps are quite readily accessible along with small activation energy in kinetics. The correctness of ts-i2III can also be approved by HOMO mainly consisting of p orbital on C3 beneficial to accept proton minor on bonding π orbital of C1-C4 denoting the upcoming double bond (54.29%, 9.35%). What’s more, MBO values of C1···H1, H1···C3 and C1···C4 (0.61, 0.28, 1.21) echo the evolution process.

Alternative H Transfer-Concerted aza-Michael Addition

An alternative structure of i2 is located denoted as i2-1 with lower relative energy of -21.8 kcal mol-1. So from II to III, another path B via i2-1 is also possible (red dash line of Figure 1a). A simple proton transfer occurs at first via ts-IIi2-1, the transition vector of which is about H1 shifting from C1 to N and the consequent shortening of C1-C4 single bond to double (1.22, 1.34, 1.42 Å). Once imine N becomes nonequivalent sp3 hybridization, i2-1 is actually already an aza-Breslow intermediate linking NHC therefore more stable than i2.

Like a transfer station, H1 is provided by N to C3 in the following step. This enhances the nucleophilic ability of N thus initiates the concerted aza-Michael addition. That is N-C2 bonding via ts-i2III-1 with activation energy of 35.1 kcal mol-1 relative to i2-1 affording cyclization product III. The transition vector of ts-i2III-1 consists of H1 moving from N to C3, closing of N to C2 and the elongation of C2-C3 double bond to single (1.22, 1.57, 1.51, 1.51 Å).

The validity of ts-IIi2-1 and ts-i2III-1 is verified by their HOMO composition. The former is mainly on lone pair p orbital of N ready to accept proton and minor on bonding π orbital of upcoming C1-C4 double bond (31.46%, 11.92%, 2.85%). In agreement with this, MBO values of C1···H1, H1···N and C1···C4 are 0.51, 0.29, 1.26. For the latter, a major disperse distribution on benzene ring and NHC heterocyclic ring is seen together with minor on p orbital of N, C3 (4.62%, 7.49%) while almost none on C2. MBO values of N···C2 and N···H1···C3 (0.78, 0.43, 0.41) are also in accordance with this. Although path B seems to be reasonable and existing parallel with path A, the activation energy of ts-IIi2-1 high to be 42.0kcal mol-1 makes it impossible.

Duplicate Oxidation and Intermolecular Oxygen Exchange

With oxygen in air as oxidant, one molecular is added to III forming a complex i3 taken as the starting point of process in the following step 4. Two sp2 type C1 and C4 are both oxidized via ts-i3IV with a small barrier of 1.9kcal mol-1 exothermic by -14.2kcal mol-1 giving stable intermediate IV with C1-O1 and C4-O2 two single bonds. However, the structure IV proposed in experiment via so called radical recombination was not located showing that two O atoms cannot remain linked once O2 molecule is connected to carbon. The transition vector of ts-i3IV demonstrates simultaneous closing of O1 to C1, O2 to C4 and cleavage of O1-O2, stretching C1-C4 double bond to single (2.16, 2.65 Å). Homo consists of C1-C4 bonding π orbital and O1-O2 anti-bonding π orbital (21.50%, 7.31%, 11.37%). MBO values denote the upcoming C1···O1 single bond and still double C1···C4 and O1···O2 connection (0.30, 1.23, 1.40).

The step 5 is the reaction initiated from a complex binding intermediate IV and III denoted as i4. This intermolecular oxygen exchange proceeds via ts-i45 also with a small barrier of 3.0 kcal mol-1 greatly exothermic by -76.3 kcal mol-1. As is described by transition vector of ts-i45 (Figure S1d), O2 is given by C4 of IV to oxidize C1 of III (1.44, 2.07 Å) yielding i5, which is a binary complex of intermediate V. The desired N-aryl 3-isoindolinone 2 is produced after expulsion of NHC from V. From the perspective of overall five steps, the intramolecular aza-Michael addition of step 2 is determined to be rate-limiting of path A kinetically.

Breslow Intermediate of Substrates 3, 4 and Solvent Effect

For imine derivative 3 as substrate, the complex 3-i1 between it and NHC is taken as starting point of previous two steps affording Breslow intermediate. Via 3-tsi1II, the activation energy of imine umpolung in step 1 is 9.1 kcal mol-1 obtaining 3-II endoergic by 3.6 kcal mol-1, from which a concerted step of cyclization is required via 3-tsIII II to furnish aza-Breslow 3-III. The activation energy of step 2 is increased to be 36.8 kcal mol-1 determined as rate-limiting. The transition vector of 3-tsi1II is about nucleophilic attack of C4 to C1 and stretching of C1-N (1.91, 1.33 Å). In the structure of 3-II, NHC is linked to imine C1 via C1-C4 single bond. Then H1 shifts from sp3 hybrid C1 to sp2 type C3 illustrated by transition vector of 3-tsII III (Figure S1e). The transient sp2 state of C1 is not stable with improved nucleophilic ability inducing its concerted Michael addition to C2. This vibration mode seems like the case of ts-i2III-1. Yet, the cyclization product 3-III is not a typical Breslow intermediate owing to the final elongation of C1-C4 double bond to single (2.32, 1.35, 2.42, 1.44 Å). Homo of 3-tsII III is composed by anti-bonding π orbital of C2-C3, diffuse σ orbital of C1-C2, p orbital of N among C1 and C2 (23.93%, 13.49%, 9.06%, 17.03%). MBO values of C1···C2 and H1···C3 (0.28, 0.34) suggests the cyclization and evident H shift.

When the imine derivative 4 participates in reaction, the starting point is complex denoted as 4-i1. The step 1 of imine umpolung proceeds via 4-tsi1II with the activation energy of 4.8 kcal mol-1 endoergic by 4.2 kcal mol-1 affording 4-II, from which one step of simple H transfer is required via 4-tsII III to yield aza-Breslow 4-III. The step 2 is also rate-limiting with increased activation energy to be 33.4 kcal mol-1. The nucleophilic attack of C4 to C1 can be seen from transition vector of 4-tsi1II also involving elongation of C1-N double bond (1.95, 1.32 Å). C1-C4 single bond is formed linking NHC to imine C1 in resultant 4-II. Shown by the transition vector of 4-tsII III (Figure S1f), the shift of H1 from sp3 hybrid C1 to sp2 type N (1.22, 1.33 Å) directly gives typical Breslow intermediate 4-III with C1-C4 double bond connecting NHC. Homo of 4-tsII III is major on lone pair p orbital of N to accept proton and minor on bonding π orbital of C1-C4 indicating upcoming formation of double bond (32.74%, 13.47%). This is matched with MBO values of C1···H1, H1···N and C1···C4 (0.50, 0.28, 1.13).

The impact of DMSO solution is studied in view of the solvent effect on reaction estimated by our approach [32-34]. Obviously, the absolute energies of all stationary points in solution are lower than those in gas phase (Table S1). For the case of 1 as substrate, it is noticed that the oxidation enhances the influence of solvent with relative energies decreased by -70~-100 kcal mol-1 compared with previous process of imine umpolung and intramolecular aza-Michael addition forming III (-40~-60 kcal mol-1). The effect becomes a little weaker when the substrate is changed to be 3 and 4 (-30~-40 kcal mol-1 vs -40~-60 kcal mol-1). For most steps, the activation energies are reduced in solution phase compared with in gas (Table S2). With reduction values -9~-11 kcal mol-1, the solvent effect with substrate 1 (-9.8, -10.4 kcal mol-1) is more visible than imine derivative 3 (-1.7, -3.6 kcal mol-1) or 4 (-5.3, -6.9 kcal mol-1) on generation of Breslow intermediate. Accordingly, the DMSO solution produces favorable influence on this NHC-catalyzed tandem imine umpolung-cyclization of aldimine leading to isoindolinone and other two imine derivatives.

Conclusions

Our DFT calculations provide the first theoretical investigation on tandem imine umpolung-cyclization of aldimine leading to isoindolinone and other two imine derivatives catalyzed by N-heterocyclic carbene. The aldimine was attacked by nucleophilic NHC generating tetrahedral intermediate, the intramolecular aza-Michael addition of which followed by H transfer gives key aza-Breslow intermediate. After oxidation by oxygen molecule, an oxygen atom transfers from its oxidation product to itself affording the complex as precursor of desired N-aryl 3-isoindolinone. Although an alternative path is plausible involving H transfer ahead of concerted aza-Michael addition, it is excluded owing to high activation energy. The preferential path is both favored by thermodynamics and kinetics.

Based on the comparison with other two imine derivatives, the initial step of imine umpolung is consistent for them via nucleophilic addition of NHC. The following intramolecular aza-Michael addition is rate-limiting step. The typical Breslow intermediate is just not available through H transfer concertedly with intramolecular cyclization. The positive solvation effect is suggested by decreased absolute and activation energies in DMSO solution compared with in gas. These results are supported by Multiwfn analysis on FMO composition of specific TSs, and MBO value of vital bonding, breaking.

Supplementary Information

The supporting information includes computation information and cartesian coordinates of stationary points; calculated relative energies for the ZPE-corrected Gibbs free energies (ΔGgas), and Gibbs free energies (ΔGsol) for all species in solution phase at 298 K.

Declarations

Funding

This work was supported by National Natural Science Foundation of China (21973056, 21972079) and Natural Science Foundation of Shandong Province (ZR2019MB050).

Data Availability

Enquiries about data availability should be directed to the authors.

References

Supplementary Information

Theoretical Investigation on N-Heterocyclic Carbene-Catalyzed Tandem Imine Umpolung-Cyclization via Breslow Intermediate

Nan Lu*, Chengxia Miao and Xiaozheng Lan

College of Chemistry and Material Science, Shandong Agricultural University, Taian, China.

Table of Contents Pages

Computation information and geometries of stationary points 2-16

Additional tables and figures 17-19

Software: GAUSSIAN09

Level of Theory: M06-2X

Basis Set: 6-31G(d)

Geometry [Cartesian coordinates]:

Optimized Cartesian coordinates for ts-i1II

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -3.300060 0.262809 0.632027

2 6 0 -3.334191 -1.064396 1.052024

3 6 0 -2.164292 -1.669280 1.495709

4 6 0 -0.943974 -0.988891 1.525006

5 6 0 -0.919484 0.371481 1.153236

6 6 0 -2.105383 0.966183 0.696512

7 6 0 0.275661 -1.697373 2.103919

8 6 0 0.289615 1.213962 1.250860

9 6 0 0.661624 2.080986 0.304545

10 6 0 1.930305 2.824848 0.461637

11 8 0 2.616101 2.857730 1.456789

12 8 0 2.256985 3.465804 -0.678524

13 6 0 3.518550 4.121813 -0.642220

14 6 0 0.222972 -3.493562 1.471256

15 6 0 2.055378 -0.958301 0.737184

16 6 0 1.440433 -1.198578 -0.507596

17 6 0 2.023576 -0.766527 -1.695668

18 6 0 3.241350 -0.094704 -1.688710

19 6 0 3.876471 0.130422 -0.464010

20 6 0 3.301386 -0.298394 0.721058

21 7 0 0.021435 -4.147553 0.294074

22 6 0 0.779167 -5.289524 0.299634

23 7 0 1.442899 -5.405403 1.407119

24 7 0 1.085204 -4.296998 2.108715

25 6 0 1.720870 -4.033755 3.393612

26 6 0 -0.846749 -3.758786 -0.810294

27 1 0 -4.202689 0.753738 0.281818

28 1 0 -4.265291 -1.623067 1.041099

29 1 0 -2.184466 -2.707389 1.823424

30 1 0 -2.078911 2.016449 0.420940

31 1 0 0.933839 1.092339 2.118434

32 1 0 0.043631 -1.975824 3.140337

33 1 0 0.129811 2.192381 -0.635526

34 1 0 3.641891 4.589118 -1.618537

35 1 0 4.314436 3.395046 -0.459982

36 1 0 3.540267 4.872891 0.151172

37 1 0 0.459986 -1.658373 -0.539902

38 1 0 1.509248 -0.945073 -2.637370

39 1 0 3.688665 0.248826 -2.616026

40 1 0 4.829674 0.652415 -0.434472

41 1 0 3.776846 -0.102992 1.677251

42 1 0 0.814109 -5.992541 -0.519838

43 1 0 2.488059 -4.793969 3.527597

44 1 0 0.984576 -4.104260 4.196738

45 1 0 2.157319 -3.030814 3.348836

46 1 0 -1.514353 -4.588661 -1.052584

47 1 0 -0.241153 -3.501376 -1.681882

48 1 0 -1.437029 -2.894854 -0.509404

49 7 0 1.543287 -1.300782 1.977465

---------------------------------------------------------------------

Optimized Cartesian coordinates for ts-IIi2

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.972758 3.830248 -1.558904

2 6 0 -0.126536 4.075415 -0.739161

3 6 0 -0.641767 3.052816 0.057346

4 6 0 -0.075389 1.783505 -0.007986

5 6 0 1.062661 1.545057 -0.785151

6 6 0 1.582406 2.576640 -1.562467

7 6 0 -0.379536 0.540495 0.814447

8 6 0 1.732067 0.211731 -0.608611

9 6 0 2.865966 0.174286 0.195043

10 6 0 3.570325 -1.081517 0.248697

11 8 0 3.217812 -2.103243 -0.315510

12 8 0 4.728542 -1.161588 0.989220

13 6 0 5.263192 0.009916 1.559687

14 6 0 -1.760698 0.214595 1.318997

15 6 0 -0.533704 -1.226695 -0.856836

16 6 0 -1.528944 -0.614028 -1.638629

17 6 0 -2.167985 -1.306146 -2.666795

18 6 0 -1.808227 -2.614366 -2.966530

19 6 0 -0.770851 -3.210727 -2.243872

20 6 0 -0.139987 -2.533198 -1.211739

21 7 0 -3.025601 0.542107 0.964527

22 6 0 -3.859693 -0.198077 1.761388

23 7 0 -3.196134 -0.952311 2.581119

24 7 0 -1.903475 -0.687673 2.296407

25 6 0 -0.828135 -1.406216 2.978629

26 6 0 -3.530993 1.422445 -0.090225

27 1 0 1.374474 4.627999 -2.176163

28 1 0 -0.573076 5.064524 -0.705834

29 1 0 -1.465531 3.261443 0.738678

30 1 0 2.476126 2.395639 -2.152466

31 1 0 1.717615 -0.481743 -1.450107

32 1 0 0.198916 0.674440 1.747180

33 1 0 3.091649 0.997908 0.860900

34 1 0 6.237980 -0.264860 1.967863

35 1 0 4.634691 0.392614 2.374268

36 1 0 5.392970 0.801133 0.812613

37 1 0 -1.752667 0.436111 -1.490751

38 1 0 -2.934894 -0.804153 -3.252760

39 1 0 -2.304640 -3.153022 -3.767376

40 1 0 -0.449966 -4.218514 -2.492320

41 1 0 0.690729 -2.969704 -0.663290

42 1 0 -4.936401 -0.147918 1.694056

43 1 0 -1.259815 -2.332060 3.353948

44 1 0 -0.452216 -0.804101 3.808644

45 1 0 -0.046421 -1.600062 2.237022

46 1 0 -3.986050 0.809448 -0.869910

47 1 0 -2.713050 1.998631 -0.512273

48 1 0 -4.268125 2.098011 0.347794

49 7 0 0.178821 -0.636435 0.188892

---------------------------------------------------------------------

Optimized Cartesian coordinates for ts-i2III

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.166454 4.240529 0.960618

2 6 0 -0.595707 3.562115 2.093507

3 6 0 -0.542093 2.163729 2.156346

4 6 0 -0.060429 1.460112 1.063267

5 6 0 0.338626 2.151334 -0.100646

6 6 0 0.303691 3.531455 -0.150919

7 6 0 0.175909 0.001475 0.688033

8 6 0 0.740853 1.126608 -1.162754

9 6 0 2.163496 0.705989 -0.932895

10 6 0 2.612617 -0.405408 -1.705313

11 8 0 1.903234 -1.135130 -2.397872

12 8 0 3.945011 -0.761916 -1.648472

13 6 0 4.825799 0.003427 -0.862751

14 6 0 -0.134985 -1.228170 1.384044

15 6 0 -1.448419 -0.036005 -1.183137

16 6 0 -2.566619 0.019393 -0.345603

17 6 0 -3.849150 -0.074186 -0.886975

18 6 0 -4.033001 -0.212371 -2.257166

19 6 0 -2.916119 -0.272536 -3.093586

20 6 0 -1.636091 -0.198586 -2.565545

21 7 0 -0.121481 -1.467583 2.725249

22 6 0 -0.293710 -2.816689 2.887346

23 7 0 -0.398521 -3.423425 1.751430

24 7 0 -0.288508 -2.440178 0.816618

25 6 0 -0.246952 -2.842470 -0.597902

26 6 0 0.219391 -0.539020 3.794182

27 1 0 -0.219529 5.324395 0.927806

28 1 0 -0.992024 4.116196 2.939072

29 1 0 -0.918126 1.666342 3.043450

30 1 0 0.613901 4.057538 -1.049492

31 1 0 0.466927 1.400549 -2.186251

32 1 0 1.389545 0.012225 0.503514

33 1 0 2.851265 1.467289 -0.587702

34 1 0 5.794202 -0.499376 -0.905859

35 1 0 4.490510 0.060906 0.180404

36 1 0 4.938426 1.023551 -1.250965

37 1 0 -2.439560 0.153973 0.724704

38 1 0 -4.709264 -0.028890 -0.225069

39 1 0 -5.033433 -0.283289 -2.671817

40 1 0 -3.045694 -0.401541 -4.164218

41 1 0 -0.751910 -0.307598 -3.188615

42 1 0 -0.329422 -3.295914 3.854620

43 1 0 -1.190877 -2.579696 -1.077722

44 1 0 -0.119444 -3.923492 -0.578608

45 1 0 0.576179 -2.340092 -1.118613

46 1 0.774381 -1.087218 4.556795

47 1 0 -0.680064 -0.108266 4.237277

48 1 0.851313 0.252658 3.391444

49 7 0 -0.112081 -0.033695 -0.731892

---------------------------------------------------------------------

Optimized Cartesian coordinates for ts-IIi2-1

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -3.070008 1.133766 1.875604

2 6 0 -2.821311 -0.109142 2.449571

3 6 0 -1.659059 -0.805121 2.120522

4 6 0 -0.745669 -0.286300 1.200087

5 6 0 -1.011019 0.964563 0.604518

6 6 0 -2.166612 1.662532 0.955484

7 6 0.537191 -0.991559 0.918530

8 6 0 -0.108603 1.465974 -0.444126

9 6 0.362801 2.707951 -0.561137

10 6 1.279323 3.008391 -1.700427

11 8 1.158641 2.514116 -2.791664

12 8 2.275391 3.893649 -1.476198

13 6 2.635668 4.202797 -0.136748

14 6 0.532394 -2.247196 0.248380

15 6 2.605443 -0.040505 -0.093170

16 6 2.406392 -0.559185 -1.390940

17 6 3.285633 -0.244623 -2.428345

18 6 4.404957 0.545725 -2.212260

19 6 4.641016 1.032605 -0.922052

20 6 3.772117 0.739189 0.112683

21 7 0 -0.462845 -2.828973 -0.498041

22 6 0.024069 -4.033979 -0.937794

23 7 1.233035 -4.249675 -0.537044

24 7 1.553791 -3.137903 0.185590

25 6 2.780730 -3.106724 0.958390

26 6 0 -1.709457 -2.215125 -0.931456

27 1 0 -3.966015 1.688247 2.136092

28 1 0 -3.519000 -0.528686 3.168100

29 1 0 -1.438753 -1.757267 2.598601

30 1 0 -2.370036 2.614215 0.471761

31 1 0.232984 0.742030 -1.185238

32 1 1.356579 -1.083579 1.823269

33 1 0.149081 3.471715 0.182016

34 1 3.638391 4.628520 -0.189936

35 1 2.655396 3.302747 0.484897

36 1 1.955497 4.944214 0.297308

37 1 1.536757 -1.167074 -1.621880

38 1 3.079342 -0.628828 -3.423470

39 1 5.079837 0.783769 -3.027160

40 1 5.512439 1.652375 -0.726166

41 1 3.940040 1.123312 1.115278

42 1 0 -0.551986 -4.710495 -1.551859

43 1 3.332872 -4.008578 0.700008

44 1 2.539218 -3.112009 2.027535

45 1 3.361902 -2.216868 0.714240

46 1 0 -2.139602 -2.850896 -1.706526

47 1 0 -1.504753 -1.225036 -1.345600

48 1 0 -2.408383 -2.115321 -0.099165

49 7 1.752170 -0.110395 0.992011

---------------------------------------------------------------------

Optimized Cartesian coordinates for ts-i2III-1

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -3.059305 1.806026 0.241661

2 6 0 -3.261632 0.479173 0.614538

3 6 0 -2.199938 -0.420885 0.687538

4 6 0 -0.911149 0.010924 0.356262

5 6 0 -0.709217 1.368257 0.048625

6 6 0 -1.764796 2.259883 -0.020538

7 6 0.369759 -0.676657 0.361003

8 6 0.752361 1.691874 -0.014065

9 6 1.356813 2.254995 1.252352

10 6 2.340314 3.295622 1.069228

11 8 2.828070 3.621912 -0.005283

12 8 2.839438 3.924058 2.176823

13 6 2.379206 3.543691 3.455517

14 6 0.708312 -1.946978 0.762145

15 6 2.312522 -0.051078 -1.097660

16 6 2.148947 -1.197608 -1.869314

17 6 3.058979 -1.476904 -2.887553

18 6 4.123547 -0.618840 -3.136573

19 6 4.273234 0.531835 -2.364577

20 6 3.377815 0.821019 -1.341714

21 7 0 -0.057556 -3.102959 0.681135

22 6 0.741028 -4.129242 1.144851

23 7 1.910359 -3.731224 1.503807

24 7 1.909719 -2.380725 1.260437

25 6 2.965569 -1.555768 1.811078

26 6 0 -1.164866 -3.299792 -0.242133

27 1 0 -3.898428 2.491630 0.187648

28 1 0 -4.261544 0.137309 0.865159

29 1 0 -2.381160 -1.432303 1.032996

30 1 0 -1.576960 3.305260 -0.249666

31 1 1.091413 2.218065 -0.909727

32 1 1.944816 0.822803 0.975170

33 1 0.690138 2.295335 2.108423

34 1 2.994768 4.087343 4.173910

35 1 2.492726 2.465318 3.615413

36 1 1.328424 3.816995 3.607396

37 1 1.310516 -1.860521 -1.691040

38 1 2.926034 -2.371625 -3.488183

39 1 4.830491 -0.841213 -3.929677

40 1 5.092453 1.217273 -2.557134

41 1 3.479890 1.738787 -0.763793

42 1 0.401292 -5.153663 1.194510

43 1 3.630095 -2.222312 2.358775

44 1 2.538182 -0.811570 2.491913

45 1 3.524243 -1.047112 1.019954

46 1 0 -2.120929 -3.388135 0.277529

47 1 0 -0.986834 -4.207672 -0.823344

48 1 0 -1.203190 -2.441055 -0.916413

49 7 1.426181 0.276763 0.014198

---------------------------------------------------------------------

Optimized Cartesian coordinates for ts-i3IV

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -2.490271 -2.378570 3.647536

2 6 0 -1.167929 -2.794237 3.517147

3 6 0 -0.326545 -2.244797 2.548504

4 6 0 -0.815398 -1.240619 1.710373

5 6 0 -2.164020 -0.874621 1.817942

6 6 0 -3.001494 -1.412689 2.779205

7 6 0 -2.482893 0.154628 0.763736

8 6 0 -2.460873 1.555154 1.398571

9 6 0 -2.847836 2.622009 0.392249

10 8 0 -3.791121 2.488779 -0.342208

11 8 0 -2.125715 3.761368 0.313967

12 6 0 -1.043410 4.015573 1.200116

13 6 0.893280 0.347263 0.532969

14 6 0 -1.653357 -0.444280 -1.513405

15 6 0 -0.736400 -1.225253 -2.231214

16 6 0 -1.007339 -1.582227 -3.549014

17 6 0 -2.179739 -1.178896 -4.179999

18 6 0 -3.078422 -0.386764 -3.472536

19 6 0 -2.820181 -0.008169 -2.159646

20 7 2.066459 0.231904 1.230700

21 6 2.917797 1.193288 0.765479

22 7 2.390455 1.892227 -0.181173

23 7 1.143849 1.366304 -0.345088

24 6 0.337544 1.942524 -1.420474

25 6 2.424968 -0.716385 2.272957

26 1 0 -3.130472 -2.826083 4.401246

27 1 0 -0.785946 -3.578458 4.163799

28 1 0.673593 -2.634910 2.423150

29 1 0 -4.042375 -1.104970 2.841273

30 1 0 -3.441583 -0.018699 0.273020

31 1 0 -1.475086 1.711287 1.843194

32 1 0 -3.195453 1.594842 2.212547

33 1 0 -0.712581 5.028126 0.970516

34 1 0 -0.212401 3.321227 1.031669

35 1 0 -1.360816 3.968685 2.245979

36 1 0.180755 -1.556839 -1.761711

37 1 0 -0.283606 -2.192312 -4.081737

38 1 0 -2.383698 -1.465096 -5.206706

39 1 0 -3.990995 -0.037794 -3.947130

40 1 0 -3.511947 0.657537 -1.655148

41 1 3.913792 1.331896 1.158475

42 1 0.129853 1.191766 -2.183049

43 1 0.951200 2.739590 -1.837460

44 1 0 -0.600280 2.347698 -1.044243

45 1 1.685650 -0.696350 3.072460

46 1 3.391836 -0.405204 2.671572

47 1 2.509994 -1.709170 1.830313

48 6 0 -0.237514 -0.502470 0.554421

49 8 1.044008 -2.176500 0.051107

50 8 2.177828 -1.899362 -0.419142

51 7 0 -1.370151 0.005671 -0.196661

---------------------------------------------------------------------

Optimized Cartesian coordinates for ts-i45

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 1.404950 -4.512467 -0.848558

2 6 0.230226 -3.865189 -1.233311

3 6 0.134933 -2.481899 -1.088516

4 6 1.218355 -1.764877 -0.626137

5 6 2.393611 -2.403450 -0.263291

6 6 2.493729 -3.786732 -0.352693

7 6 3.398545 -1.353606 0.126508

8 6 4.801312 -1.659966 -0.403100

9 6 5.863859 -0.799508 0.264874

10 8 5.995536 -0.787442 1.460084

11 8 6.724784 -0.085371 -0.492713

12 6 6.537913 0.053438 -1.892544

13 6 0.633294 0.589364 -1.599263

14 6 3.388972 1.050545 0.121964

15 6 3.302157 1.286453 1.500387

16 6 3.845398 2.442081 2.053944

17 6 4.479676 3.381788 1.244533

18 6 4.568116 3.157444 -0.127386

19 6 4.028748 1.999160 -0.679449

20 7 1.192345 1.947450 -1.558448

21 6 1.609308 2.293818 -2.799037

22 7 1.585278 1.335484 -3.660538

23 7 1.041962 0.269846 -2.974496

24 6 1.349998 -1.028608 -3.532888

25 6 0.874965 2.888863 -0.524120

26 1 1.483199 -5.591622 -0.946923

27 1 0 -0.605835 -4.446518 -1.616434

28 1 0 -0.714884 -1.868742 -1.330936

29 1 3.405343 -4.308858 -0.071617

30 1 3.455659 -1.282962 1.223942

31 1 4.782199 -1.595919 -1.491313

32 1 5.062659 -2.689192 -0.130153

33 1 7.103279 0.941192 -2.179806

34 1 5.488966 0.200233 -2.156202

35 1 6.934684 -0.817319 -2.426650

36 1 2.774390 0.568947 2.117872

37 1 3.772992 2.609652 3.124993

38 1 4.908451 4.279533 1.680636

39 1 5.060925 3.883454 -0.768502

40 1 4.059169 1.827289 -1.751398

41 1 1.969578 3.289889 -3.026230

42 1 1.706627 -0.847521 -4.547375

43 1 0.462437 -1.660360 -3.592073

44 1 2.123188 -1.550919 -2.958513

45 1 0.935426 3.908735 -0.919955

46 1 1.536287 2.785976 0.340226

47 1 0 -0.128799 2.672384 -0.195658

48 6 1.284319 -0.254958 -0.410675

49 8 0.730664 0.105570 0.739579

50 7 2.837771 -0.126925 -0.476297

51 6 0 -1.544428 4.343581 1.535570

52 6 0 -2.068761 4.423683 0.240014

53 6 0 -2.396498 3.272428 -0.464884

54 6 0 -2.241016 2.041712 0.176237

55 6 0 -1.722697 1.960225 1.467507

56 6 0 -1.346759 3.109117 2.150056

57 6 0 -1.701677 0.535294 1.916931

58 6 0 -2.670524 0.315633 3.096929

59 6 0 -2.444648 -1.022861 3.792468

60 8 0 -1.407183 -1.254713 4.349700

61 8 0 -3.404181 -1.971623 3.763350

62 6 0 -4.710647 -1.686269 3.294911

63 6 0 -3.221469 0.444700 -1.534232

64 6 0 -2.217947 -1.587820 0.739103

65 6 0 -1.201245 -2.275195 1.408982

66 6 0 -1.308708 -3.648320 1.570899

67 6 0 -2.391590 -4.343281 1.035615

68 6 0 -3.370079 -3.660661 0.316728

69 6 0 -3.295471 -2.275634 0.177151

70 7 0 -3.114417 -0.318642 -2.647013

71 6 0 -4.024263 0.164307 -3.536821

72 7 0 -4.751091 1.117357 -3.038602

73 7 0 -4.279659 1.250407 -1.780873

74 6 0 -5.090507 2.058978 -0.870788

75 6 0 -2.280973 -1.470481 -2.992618

76 1 0 -1.262143 5.253093 2.055751

77 1 0 -2.167243 5.391690 -0.240704

78 1 0 -2.673776 3.325175 -1.514130

79 1 0 -0.904446 3.045113 3.139916

80 1 0 -0.687080 0.200556 2.127580

81 1 0 -3.697351 0.499030 2.772454

82 1 0 -2.418576 1.072081 3.846985

83 1 0 -5.264610 -2.620051 3.390145

84 1 0 -4.707552 -1.386313 2.242503

85 1 0 -5.194253 -0.915440 3.904507

86 1 0 -0.309837 -1.725172 1.709944

87 1 0 -0.514621 -4.181543 2.083581

88 1 0 -2.465291 -5.418656 1.162993

89 1 0 -4.209500 -4.198855 -0.113525

90 1 0 -4.091384 -1.730834 -0.328125

91 1 0 -4.117623 -0.223394 -4.540227

92 1 0 -6.117600 1.705149 -0.969128

93 1 0 -5.027101 3.111257 -1.146261

94 1 0 -4.735428 1.926837 0.147635

95 1 0 -2.757917 -1.933143 -3.857840

96 1 0 -2.237918 -2.210854 -2.195141

97 1 0 -1.311533 -1.027572 -3.197073

98 6 0 -2.450713 0.673093 -0.295511

99 8 0 -0.809335 0.598561 -1.557497

100 7 0 -2.147980 -0.177717 0.697654

---------------------------------------------------------------------

Optimized Cartesian coordinates for 3-tsi1II

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -3.397624 0.411148 -0.158503

2 6 0 -3.624161 -0.961227 -0.315804

3 6 0 -2.593937 -1.796580 -0.716804

4 6 0 -1.292989 -1.305477 -0.946982

5 6 0 -1.073677 0.093148 -0.815772

6 6 0 -2.137482 0.922707 -0.427591

7 6 0.240143 0.651290 -1.139087

8 6 0.737778 1.815243 -0.689474

9 6 2.081531 2.244613 -1.152736

10 8 2.810273 1.550334 -1.815222

11 8 2.518738 3.481764 -0.803370

12 6 1.673629 4.386542 -0.116122

13 6 1.974582 -2.992409 -0.922331

14 6 2.049633 -3.447514 -2.236601

15 6 3.175168 -4.145246 -2.670092

16 6 4.231161 -4.383889 -1.795181

17 6 4.163853 -3.916437 -0.482390

18 6 3.039052 -3.223853 -0.050263

19 1 0 -4.206390 1.072924 0.134266

20 1 0 -4.612662 -1.373633 -0.132334

21 1 0 -2.749080 -2.865636 -0.836457

22 1 0 -1.971018 1.995501 -0.372343

23 1 0.867697 0.063353 -1.808810

24 1 0.180529 2.424396 0.013498

25 1 2.223582 5.326708 -0.069385

26 1 1.462398 4.048022 0.904226

27 1 0.732344 4.549089 -0.651222

28 1 1.213578 -3.246461 -2.899306

29 1 3.228852 -4.499108 -3.695322

30 1 5.108446 -4.927009 -2.133603

31 1 4.988070 -4.093343 0.202050

32 1 2.968727 -2.871482 0.976813

33 7 0 -0.298258 -2.215679 -1.262197

34 6 0.758636 -2.243469 -0.457327

35 1 1.023458 -1.356841 0.138494

36 6 0 -1.808935 -3.691056 2.065735

37 7 0 -1.522195 -4.798085 1.454232

38 6 0.092557 -3.262780 1.011736

39 7 0 -0.856139 -2.734156 1.831765

40 6 0.198578 -5.475123 -0.121033

41 6 0 -0.908745 -1.365819 2.326833

42 1 0 -2.680795 -3.533611 2.683867

43 1 0 -0.040512 -5.138571 -1.134124

44 1 0 -0.269450 -6.436361 0.086352

45 1 1.280855 -5.538009 -0.004445

46 1 0 -0.941938 -1.368954 3.418843

47 1 0 -1.789239 -0.860387 1.919520

48 1 0 -0.012277 -0.842470 1.996088

49 7 0 -0.342386 -4.516525 0.827216

---------------------------------------------------------------------

Optimized Cartesian coordinates for 3-tsIIIII

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.609624 4.222389 -0.710323

2 6 0 -0.316080 4.460820 -1.221727

3 6 0.627049 3.464003 -1.236778

4 6 0.348452 2.167244 -0.714374

5 6 0 -0.945617 1.951611 -0.120563

6 6 0 -1.910737 2.976631 -0.205793

7 6 0 -1.300768 0.661935 0.421552

8 6 0 -2.588180 0.000817 0.096042

9 6 0 -2.926209 -1.200016 0.819825

10 8 0 -2.147241 -1.759410 1.587608

11 8 0 -4.128467 -1.795615 0.607594

12 6 0 -5.088316 -1.152448 -0.208724

13 6 1.518083 0.013016 1.161375

14 6 2.682917 0.766508 1.385997

15 6 3.256644 0.854272 2.647560

16 6 2.676637 0.193273 3.728159

17 6 1.513719 -0.541061 3.528779

18 6 0.932842 -0.626019 2.263833

19 1 0 -2.349867 5.015671 -0.696994

20 1 0 -0.068166 5.440845 -1.620489

21 1 1.611807 3.627528 -1.663557

22 1 0 -2.896872 2.778382 0.210749

23 1 0 -0.855549 0.301021 1.332975

24 1 0 -3.197874 0.429281 -0.688503

25 1 0 -5.996005 -1.751727 -0.135590

26 1 0 -4.765487 -1.117502 -1.255689

27 1 0 -5.293876 -0.135403 0.142386

28 1 3.128699 1.285973 0.543782

29 1 4.160601 1.440094 2.786628

30 1 3.120390 0.262146 4.716718

31 1 1.033335 -1.041964 4.363984

32 1 0.001837 -1.175345 2.161604

33 7 1.167400 1.141807 -1.009513

34 6 1.039766 0.004687 -0.275256

35 1 0 -1.367791 -0.287725 -0.412940

36 6 1.311844 -3.228308 -1.889877

37 7 1.580029 -2.472102 -2.902640

38 6 1.237167 -1.182774 -1.080875

39 7 1.096127 -2.505718 -0.750464

40 6 1.838131 -0.120862 -3.336700

41 6 0.642409 -3.106609 0.498443

42 1 1.255024 -4.306158 -1.919562

43 1 0.996861 0.566537 -3.393615

44 1 2.029496 -0.608356 -4.292111

45 1 2.710066 0.433046 -2.995078

46 1 0 -0.328430 -2.687536 0.787025

47 1 1.372582 -2.941346 1.289341

48 1 0.535205 -4.177053 0.316722

49 7 1.531383 -1.207128 -2.407698

---------------------------------------------------------------------

Optimized Cartesian coordinates for 4-tsi1II

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 1.571460 1.711412 0.660262

2 6 2.919499 1.502152 0.944443

3 6 3.860039 2.457547 0.576131

4 6 3.437269 3.609931 -0.080827

5 6 2.090267 3.813610 -0.390807

6 6 1.131400 2.857043 -0.003045

7 6 1.710243 5.056057 -1.128637

8 6 1.308634 5.047745 -2.482793

9 6 0.898420 6.252148 -3.069276

10 6 0.925675 7.449213 -2.365150

11 6 1.353071 7.455218 -1.041791

12 6 1.735454 6.263369 -0.432244

13 6 0 -0.322683 3.142763 -0.368111

14 7 0 -0.976759 4.218114 0.041764

15 6 1.279608 3.852277 -3.335897

16 6 2.007285 2.728157 -3.218066

17 6 1.815419 1.617545 -4.182686

18 6 2.466247 0.296002 -3.877863

19 6 3.029225 -0.006991 -2.633104

20 6 3.579558 -1.265583 -2.403008

21 6 3.580939 -2.223355 -3.413493

22 6 3.020024 -1.926543 -4.655563

23 6 2.460221 -0.676236 -4.883101

24 8 1.131892 1.740483 -5.185733

25 1 0.835341 0.985095 0.993354

26 1 3.226367 0.603337 1.471695

27 1 4.911987 2.313361 0.802523

28 1 4.159793 4.363395 -0.383382

29 1 0.567124 6.241179 -4.104499

30 1 0.609686 8.369470 -2.846259

31 1 1.367762 8.379416 -0.472224

32 1 2.019310 6.253467 0.616622

33 1 0 -0.497871 2.944840 -1.436279

34 1 0.602934 3.898110 -4.190422

35 1 2.746541 2.614583 -2.436420

36 1 3.022724 0.719873 -1.824688

37 1 4.010433 -1.492920 -1.432458

38 1 4.018030 -3.201270 -3.234898

39 1 3.019802 -2.672775 -5.444283

40 1 2.008651 -0.422849 -5.836995

41 6 0 -0.721089 4.751407 1.297456

42 6 0 -0.262457 4.032677 2.419772

43 6 0 -1.011318 6.119509 1.478544

44 6 0 -0.084312 4.663628 3.650243

45 1 0 -0.054983 2.970227 2.329862

46 6 0 -0.819035 6.743290 2.701056

47 1 0 -1.376297 6.667297 0.614274

48 6 0 -0.350329 6.020074 3.801174

49 1 0.268338 4.082731 4.498696

50 1 0 -1.040503 7.802441 2.803787

51 1 0 -0.203282 6.506831 4.760175

52 6 0 -2.556303 -0.099563 -0.846685

53 7 0 -3.345875 0.535315 -0.034793

54 6 0 -1.294233 1.502545 0.024365

55 7 0 -1.305637 0.453450 -0.846081

56 6 0 -3.136058 2.511342 1.368728

57 6 0 -0.164394 0.040875 -1.649850

58 1 0 -2.841575 -0.951553 -1.446272

59 1 0 -3.154786 3.471769 0.848881

60 1 0 -2.525173 2.610299 2.266893

61 1 0 -4.138380 2.166702 1.616808

62 1 0 -0.514034 -0.524351 -2.515355

63 1 0.527820 -0.568889 -1.064404

64 1 0.359315 0.934845 -1.994514

65 7 0 -2.549300 1.515183 0.483617

---------------------------------------------------------------------

Optimized Cartesian coordinates for 4-tsIIIII

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.313670 0.905053 1.854532

2 6 0 -0.837706 0.211492 2.941412

3 6 0 -0.662766 -1.165590 3.032081

4 6 0 -0.000330 -1.830604 2.002328

5 6 0.486796 -1.152250 0.884426

6 6 0.365782 0.255439 0.812600

7 6 1.090435 -1.954625 -0.221331

8 6 0.439188 -2.105172 -1.467503

9 6 1.090650 -2.801649 -2.492696

10 6 2.327522 -3.400167 -2.283392

11 6 2.944484 -3.286789 -1.042283

12 6 2.332192 -2.559222 -0.025366

13 6 0.993845 1.043339 -0.284996

14 7 2.387299 0.825277 -0.813364

15 6 0 -0.897330 -1.560703 -1.755215

16 6 0 -1.927847 -1.481600 -0.898032

17 6 0 -3.212565 -0.878301 -1.323485

18 6 0 -4.277259 -0.678139 -0.285792

19 6 0 -3.992423 -0.660071 1.083327

20 6 0 -5.009051 -0.417376 2.003043

21 6 0 -6.313170 -0.207493 1.563852

22 6 0 -6.600983 -0.222143 0.198661

23 6 0 -5.585365 -0.445250 -0.721803

24 8 0 -3.404051 -0.508479 -2.472742

25 1 0 -0.395938 1.990210 1.833560

26 1 0 -1.353911 0.754055 3.728210

27 1 0 -1.035622 -1.717578 3.889198

28 1 0.122642 -2.910010 2.042604

29 1 0.599826 -2.893072 -3.458328

30 1 2.808404 -3.946700 -3.088598

31 1 3.918986 -3.732996 -0.869641

32 1 2.843361 -2.412423 0.923077

33 1 1.226379 0.362532 -1.273268

34 1 0 -1.080343 -1.231644 -2.779763

35 1 0 -1.838054 -1.856468 0.113463

36 1 0 -2.977059 -0.804876 1.442116

37 1 0 -4.778862 -0.394204 3.063919

38 1 0 -7.106024 -0.029353 2.284153

39 1 0 -7.617510 -0.055912 -0.144488

40 1 0 -5.780232 -0.445624 -1.789615

41 6 3.344911 0.347650 0.058799

42 6 3.310013 0.452902 1.465798

43 6 4.497364 -0.237153 -0.518343

44 6 4.361247 -0.032938 2.243748

45 1 2.454063 0.905729 1.955197

46 6 5.531849 -0.716572 0.263794

47 1 4.524889 -0.320391 -1.601136

48 6 5.472301 -0.630178 1.660245

49 1 4.300722 0.057637 3.325547

50 1 6.396622 -1.170465 -0.213830

51 1 6.280861 -1.013970 2.274020

52 6 0 -0.620048 4.160758 -1.053621

53 7 0.595178 4.599285 -0.944440

54 6 0.561445 2.392070 -0.504071

55 7 0 -0.705071 2.821556 -0.793128

56 6 2.743684 3.617587 -0.321384

57 6 0 -1.846152 1.949731 -1.007374

58 1 0 -1.472962 4.766311 -1.321951

59 1 3.305122 3.066510 -1.075961

60 1 2.963794 3.180897 0.657102

61 1 2.973652 4.681840 -0.329392

62 1 0 -1.568026 1.180568 -1.731744

63 1 0 -2.674168 2.542823 -1.397004

64 1 0 -2.144072 1.466047 -0.072248

65 7 1.321836 3.501138 -0.600837

---------------------------------------------------------------------

Biomedical Science &, Research

Table S1: Calculated relative energies (all in kcal mol-1, relative to isolated species) for the ZPE-corrected Gibbs free energies (ΔGgas), Gibbs free energies for all species in solution phase (ΔGsol) at 298 K by M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) method and difference between absolute energy.

Biomedical Science &, Research

Table S2: The activation energy (local barrier) (in kcal mol-1) of all reactions in the gas, solution phase calculated with M06-2X/6- 311++G(d,p)//M06-2X/6-31G(d) method and difference between the two.

Biomedical Science &, Research

Figure S1: Evolution of bond lengths along the IRC for (a) ts-i1II (b) ts-IIi2 (c) ts-i2III (d) ts-i45 (e) 3-tsIIIII (f) 4-tsIII II at the M06-2X/6- 311++G(d,p) level.

Sign up for Newsletter

Sign up for our newsletter to receive the latest updates. We respect your privacy and will never share your email address with anyone else.